Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ## **Table of Contents** ## **FIREARMS** | FA-I-1 | Physical Examination & Classification of Firearms | 5 | |----------|---|----| | FA-I-2 | Safe Firearm Handling | 7 | | FA-I-3 | Pre-Firing Safety Examination | 9 | | FA-I-4 | Trigger Pull Examination | 12 | | FA-I-5 | Trigger Pull Spring Gauge | 17 | | FA-I-6 | Barrel and Overall Length Measurement | 18 | | FA-II-1 | Rusty Firearm Examination | 21 | | FA-II-2 | Silencer Examination | 24 | | FA-II-3 | Malfunctioning Firearm Examination | 26 | | FA-II-4 | Bore Chamber Casting | 32 | | FA-II-5 | Firearm Reference Collection | 35 | | FA-II-6 | Ammunition Reference Collection | 38 | | FA-III-1 | Water Recovery Tank | 41 | | FA-III-2 | Cotton Recovery Box | 44 | | FA-III-3 | Bullet Trap | 47 | | FA-III-4 | Remote Firing | 50 | | FA-III-5 | Downloading | 53 | | FA-III-6 | Primed Cases | 56 | | FA-IV- | Caliber Determination | 58 | | FA-IV-2 | Measuring Projection Scope | 61 | | FA-IV-3 | Air Gap | 62 | | FA-IV-4 | Stereomicroscope Grid | 65 | | FA-IV-5 | Stereomicroscope Micrometer | 66 | | | | | ## Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ## **Table of Contents (continued)** | FA-IV-6 | Stereomicroscope Ruler | 67 | |----------|---|-----| | FA-IV-7 | GRC | 70 | | FA-IV-8 | Wadding Determination | 72 | | FA-IV-9 | Shot Determination | 75 | | FA-IV-10 | Physical Exam and Classification of Fired Bullets | 79 | | FA-IV-11 | Physical Exam and Classification of Fired Cartridge Cases | 83 | | FA-IV-12 | Physical Exam and Classification of Shotgun Shells | 86 | | FA-IV-13 | Microscopic Comparison | 89 | | FA-IV-14 | Trace Material Exam | 93 | | FA-IV-15 | Open/Unsolved Case File | 96 | | FA-IV-16 | IBIS or NIBIN | 97 | | | | | | RANGE DE | TERMINATION (Muzzle to Target Distance Determination) | | | RD-I-1 | Visual Examination | 99 | | RD-I-2 | Microscopic Examination | 103 | | RD-II-1 | Modified Griess DAT | 107 | | RD-II-2 | Modified Griess DAT | 112 | | RD-II-3 | Sodium Rhodizonate / Bashinski Transfer Technique | 117 | | RD-II-4 | Sodium Rhodizonate DAT | 124 | | RD-II-5 | DTO | 127 | | RD-II-6 | Simplified Griess and Sodium Rhodizonate | 132 | Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ## **Table of Contents (continued)** | RD-III-1 | Non shot Pellet Pattern Production | 138 | |----------|--|----------| | RD-III-2 | Shot Pellet Pattern Production | 140 | | | | 1 | | TOOLMAR | RKS | , | | TM-I-1 | Examination and Physical Classification Tool | 142 | | TM-I-2 | Trace Exam Tool | 144 | | TM-I-3 | Test Standards | 147 | | TM-II-1 | Examination and Physical Classification Toolmark | 149 | | TM-II-2 | Trace Toolmark | 151 | | TM-II-3 | Microscopic Comparison | 154 | | TM-III-1 | Magnesium Smoking | | | TM-III-2 | Casting | 162 | | TM-IV-1 | MIX Cylinder Examination | 164 | | TM-IV-2 | Key Examination | 167 | | TM-IV-3 | Lock Set Examination | 169 | | TM-IV-4 | Safe Examination | 171 | | TM-IV-5 | External Safe Examination | 174 | | TM-IV-6 | Internal Safe Examination | 177 | | TM-V-1 | Serial Number Restoration (Polishing) | 180 | | TM-V-2 | Serial Number Restoration (Chemical Restoration) | 183 | | TM-V-3 | Serial Number Restoration (Heat) | 188 | | TM-V-4 | Serial Number Restoration (Magnetic) | 191 | | TM-V-5 | Serial Number Restoration (Electrochemical) | 195 | ## Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### **APPENDICES** | Appendix 1 - Range of Conclusions | 198 | |--|------| | Appendix 2 - Critical Reagents | 201 | | Appendix 3 - Calibration Standards and Instrumentation Maintenance | 204 | | Appendix 4 - Worksheets | 209 | | Appendix 5 - Reports and Case Files | 212 | | Appendix 6 - Serial Number Restoration | 214 | | Appendix 7 - Verifications | 226 | | Appendix 8 - Abbreviations | 227 | | Appendix 9 - Physical Matching | 231 | | Appendix 10 - Uncertainty of Measurement in Gun Barrel Length | 234 | | Appendix 11 - Packaging of Firearm Evidence for Submittal to the Laborator | y239 | | Appendix 12 - Revision History | 240 | Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### FA-I-1 #### PHYSICAL EXAMINATION and CLASSIFICATION of FIREARMS #### 1.0 INTRODUCTION 1.1 The initial examination of any firearm will include the completion of a firearm worksheet. This worksheet will include the manufacture data of the firearm and will serve as a source to document the condition of the firearm as received and any tests performed to or with the firearm. (See Appendix 4) ### 1.2 OTHER RELATED PROCEDURES - 1.2.1 Safe Firearm Handling - 1.2.2 Pre-Firing Safety Checks - 1.2.3 Trigger Pull Examination - 1.2.4 Barrel and Overall Length Measurements ## 2.0 SAFETY CONSIDERATIONS - 2.1 This procedure involves hazardous materials, operations and equipment. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Proper caution must be exercised and the use of personal protective equipment must be considered. - 2.2 Appropriate hearing and eye protection must be worn when applicable. #### 3.0 PREPARATION 3.1 NONE #### 4.0 INSTRUMENTATION **4.1 NONE** Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS **5.1 NONE** #### 6.0 PROCEDURE or ANALYSIS - 6.1 A firearm worksheet should be filled out according to Minimum Standards and Controls. This may include determining the following: - 6.1.1 Caliber/Gauge - 6.1.2 Make/Model - 6.1.3 Serial number - 6.1.4 Firing mechanics - 6.1.5 Type of action - 6.1.6 Safeties - 6.1.7 Operating condition - 6.1.8 Trigger pull - 6.1.9 Rifling characteristics - 6.1.10 Barrel length - 6.1.11 Overall length - 6.1.12 Any other data as per Appendix 4 ## 7.0 APPROPRIATE APPENDICES 7.1 Appendix 4 - Worksheets ## 8.0 REFERENCES **8.1 NONE** Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### FA-I-2 #### SAFE FIREARM HANDLING #### 1.0 INTRODUCTION 1 .1 Firearm evidence in the laboratory environment is not dangerous if handled correctly and treated with respect. Occasionally, loaded firearms are received in evidence for a particular examination. These, of course, need very special handling. All firearms must be treated as though they are loaded. This rule cannot be over stressed and must be followed at all times, whether it's in the evidence receiving area, the firearm section, the test firing area, or in court. Safe firearm handling within the laboratory environment corresponds with safe firearm handling in general. The only way to prevent accidents is to practice safety at all times. ## 1.2 OTHER RELATED PROCEDURES - 1.2.1 Physical Examination and Classification of Firearms - 1.2.2 Pre-Firing Safety Checks - 1.2.3 Trigger Pull Examination - 1.2.4 Barrel and Overall Length Measurements ## 2.0 SAFETY CONSIDERATIONS - 2.1 This procedure involves hazardous materials, operations and equipment. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Proper caution must be exercised and the use of personal protective equipment must be considered. - 2.2 Appropriate hearing and eye protection must be worn when applicable. #### 3.0 PREPARATION Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived **3.1 NONE** #### 4.0 INSTRUMENTATION **4.1 NONE** #### 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS **5.1 NONE** #### 6.0 PROCEDURE or ANALYSIS The muzzle of the firearm must always be pointed in a safe direction. Prior to any examination, regardless of which section is receiving the firearm, a competent individual must ascertain the loaded or unloaded condition of the firearm. This process must be accomplished before the firearm is subjected to scientific examination and performed according to each laboratory section's particular guidelines. Test firing or any examination of the firearm that utilizes live ammunition, or a live ammunition component, will only be performed in the Firearm Section or designated test fiting areas. A firearm will not be returned to the evidence room or returned to any agency in a loaded condition. ## 7.0 APPROPRIATE APPENDICES **7.1 NONE** ## 8.0 REFERENCES - 8.1 "A Guide to Firearms Safety", A Safety and Educational Publication of the National Rifle Association, May 1994. - 8.2 "Technical Protocols for the Handling of Firearms and Ammunition", FBI, June 1 992. Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### FA-I-3 #### PRE-FIRING SAFETY EXAMINATION #### 1.0 INTRODUCTION - 1 .1 It is the responsibility of the firearm examiner to ensure that all appropriate safety function checks are performed on a firearm or item of ammunition prior to test firing. Following is a list of safety checks, which shall be considered. The examiner must be mindful that individual case situations may require a more extensive function test process than that which is listed here. - 1.2 OTHER RELATED PROCEDURES - 1.2.1 Safe Firearm Handling #### 2.0
SAFETY CONSIDERATIONS - 2.1 This procedure involves hazardous materials, operations and equipment. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Proper caution must be exercised and the use of personal protective equipment must be considered. - 2.2 Appropriate hearing and eye protection must be worn when applicable. #### 3.0 PREPARATION 3.1 NONE ## 4.0 INSTRUMENTATION **4.1 NONE** #### 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS **5.1 NONE** #### 6.0 PROCEDURE or ANALYSIS #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 6.1 Deciding Whether Or Not A Firearm Can Be Safely Test Fired From The Normal Hand Held Position - 6.1.1 Is the chamber/bore clear? - 6.1.2 Are there any signs of cracks or weaknesses in major parts of the firearm, such as the frame, slide or barrel? - 6.1.3 Does the firearm function, lock-up, or dry fire, as you would expect it to? - 6.1.4 Is the correct ammunition being utilized? - 6.2 Is It Appropriate to Utilize the Evidence Ammunition? - 6.2.1 Are there signs of reloading? If so, reconsider the need to test fire the evidence ammunition. - 6.2.2 Are there splits in the cartridge case neck and/or other significant damage to the cartridge case? - 6.2.3 Is the ammunition of the correct caliber? This assessment of caliber cannot be based on the head stamp! - 6.2.4 Are there existing toolmarks on pertinent surfaces of the ammunition? - 6.2.5 Is the ammunition needed for other tests; i.e., range determinations? - 6.3 Muzzle Loaders. - 6.3.1 Does the chamber/barrel appear sound? - 6.3.2 Do the percussion nipples have oversize flash holes? - 6.3.3 If a black powder firearm is received in the loaded condition, it must have the bullet and charge removed. It may then be properly loaded prior to test firing. - 6.3.4 Is this an "original" muzzleloader or a modern reproduction? "Originals" must always be remote fired. Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ## 6.4 INTERPRETATION OF RESULTS: 6.4.1 If any of the above considerations cannot be answered with a clear "yes" or otherwise rectified and test firing is necessary, that firearm must be remote fired. #### 7.0 APPROPRIATE APPENDICES 7.1 Appendices 4 - Worksheets #### **8.0 REFERENCES** Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### FA-I-4 #### TRIGGER PULL EXAMINATION - ARSENAL (POSTAL) WEIGHTS #### 1.0 INTRODUCTION 1.1 One of the routine examinations conducted in a firearm identification examination is determining the trigger pull of a firearm. Trigger pull is defined as the amount of force, which must be applied to the trigger of a firearm to cause sear release. This examination can provide vital information regarding the mechanical operating condition of the firearm. The trigger pull of a firearm can be obtained utilizing arsenal (postal) weights. Insofar as possible, the "official" NRA method of measuring trigger pulls will be utilized. The official method is hereby paraphrased from the NRA Small bore Rifle Rules, NRA Pistol Rules, and NRA High Power Rifle Rules (all Jan. 1, 1999). The firearm shall be held with the barrel perpendicular to the horizontal surface on which the test weights are supported. The rod or hook of the test weights shall rest on the lowest point of the curve in curved triggers or on a point approximately 1/4 to 1/2 inch from the lower end of straight triggers. To pass the weight test, a weight of the correct number of pounds shall be lifted by the firearm trigger while in the cocked position and while all safety devices are in firing positions, from the horizontal surface on which it is resting, until the weight hangs free and without releasing the trigger. ## 1.2 OTHER RELATED PROCEDURES - 2.1 Physical Examination & Classification of Firearms - 1.2.2 Safe Firearm Handling - N2.3 Trigger Pull Examination Spring Gauge ## 2.0 SAFETY CONSIDERATIONS 2.1 This procedure involves hazardous materials, operations and equipment. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Proper caution must be exercised and the use of personal protective equipment must be considered. 2.2 Appropriate hearing and eye protection must be worn when applicable. #### 3.0 PREPARATION **3.1 NONE** #### 4.0 INSTRUMENTATION 4.1 Arsenal Weights # 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS **5.1 NONE** #### 6.0 PROCEDURE or ANALYSIS - 6.1 SINGLE ACTION TRIGGER PULL - 6.1.1 Insure that the firearm is unloaded. - 6.1.2 Cock the firearm. - 6.1.3 Hold the firearm with the muzzle vertical. - 6.1.4 Rest the trigger hook of the arsenal (postal) weight hanger on the trigger at the lowest point of the curve of the trigger when the barrel is held vertically, or if this is not possible, on a point approximately 1/4 to 1/2 inch from the lower end of straight triggers, making sure it is not touching any other part of the firearm, with the weights hanging parallel to the bore of the firearm. - 6.1.5 Add weights until the sear releases. - 6.1.6 Check the trigger pull a sufficient number of times to assure confidence in the figure obtained, resetting the sear connection after each attempt. It is recognized that measuring a trigger pull is not as straightforward as weighing a bullet on an electronic balance. Due to Page **13** of **241** #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived incorrect positioning of the hook, holding the barrel off vertical, or a particularly vigorous lifting of the trigger pull device imparting an inertial skew, several attempts are generally necessary to assure an accurate trigger pull category is assigned. Do NOT record any of these incorrectly obtained measurements. Assign the firearm to the appropriate trigger pull weight category as offered in the Firearm Worksheet. If it is found that a particular trigger "breaks" very near an even pound or half pound (the cutoff between trigger pull categories), continue to repeat the trigger pull test until the appropriate pull category can be assigned with confidence. The fact that the trigger breaks very near the cutoff between trigger pull categories should be noted in the Remarks Section of the Firearm Worksheet. Note any revolver cylinder chamber that alters the trigger pull. 6.1.7 It should be noted that measuring the trigger pull of a rimfire firearm on an empty chamber may result in damage to the chamber of the firearm. If the potential for damage exists from dry firing, then a "dummy" cartridge should be used. The examiner must also take into consideration the potential for damage of a center fire firearm and may wish to use a "dummy" cartridge in this instance as well. ## 6.3 DOUBLE ACTION TRIGGER PULL - 6.3.1 Insure that the firearm is unloaded. - 6.3.2 Hold the firearm with the muzzle vertical. - 6.3.3 Rest the trigger hook of the arsenal (postal) weight hanger on the trigger at the lowest point of the curve of the trigger when the barrel is held vertically, or if this is not possible, on a point approximately 1/4 to 1/2 inch from the lower end of straight triggers, making sure it is not touching any other part of the firearm, with the weights hanging parallel to the bore of the firearm. - 6.3.4 Add weights until the weights pull the trigger through the double action sequence and the sear releases. - 6.3.5 Check the trigger pull a sufficient number of times to assure confidence in the figure obtained, resetting the sear connection after each Page **14** of **241** #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived attempt. It is recognized that measuring a trigger pull is not as straightforward as weighing a bullet on an electronic balance. Due to incorrect positioning of the hook, holding the barrel off vertical, or a particularly vigorous lifting of the trigger pull device imparting an inertial skew, several attempts are generally necessary to assure an accurate trigger pull category is assigned. Do NOT record any of these incorrectly obtained measurements. Assign the firearm to the appropriate trigger pull weight category as offered in the Firearm Worksheet. If it is found that a particular trigger "breaks" very near an even pound or half pound (the cutoff between trigger pull categories), continue to repeat the trigger pull test until the appropriate pull category can be assigned with confidence. Again, record only the correct trigger pull category. The fact that the trigger breaks very near the cutoff between trigger pull categories should be noted in the Remarks Section of the Firearm Worksheet. Note any revolver cylinder chamber that alters the trigger pull. 6.3.6 It should be noted that measuring the trigger pull of a rimfire firearm on an empty chamber may result in damage to the chamber of the firearm. If the potential for damage exists from dry firing, then a "dummy" cartridge should be used. The examiner must also take into consideration the potential for damage of a center fire firearm and may wish to use a "dummy" cartridge in this instance as well. ## **6.4 INTERPRETATION OF RESULTS:** 6.4.1 The results acquired are only an approximation and a different technique may lead to a different trigger pull weight. The trigger pull is recorded as a part of a trigger pull
category, (such as 4.0 to 4.5 pounds - meaning that 4.0 pounds can be lifted without causing the hammer/striker to fall off sear but 4.5 pounds will cause the hammer/striker to fall). The accumulated trigger pulls form a database which can be used to ascertain whether the status of a particular trigger pull is "lighter than normal," "normal," or "heavier than normal". By applying a rough approximation of one standard deviation to the trigger pull database the status of a particular trigger pull can be determined. Generally, if a trigger pull is determined to be "lighter than normal" this fact should be reflected in the Results Section of the Firearm Worksheet and also in the written Page **15** of **241** Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived Laboratory Report. Because opinions vary between experts on what constitutes a "light," "normal," or "heavy" trigger pull suggested wording of this fact might read something like: The single action trigger pull of Item # I was between 2.5 and 3. 0 pounds. This can be considered a lighter-than-normal trigger pull. #### 7.0 APPROPRIATE APPENDICES - 7.1 Appendices 3 Calibration Standards - 7.2 Appendices 4 Worksheets #### **8.0 REFERENCES** - 8.1 Gamboe, Tom, "MAFS Firearms Workshop: Trigger Pull Methods," AFTE Journal, Vol. 18, No. 3, p. 77. - 8.2 Rios, Ferdinand and Thornton, John, "Static vs. Dynamic Determination of Trigger Pull," AFTE Page **16** of **241** Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived # FA-I-5 TRIGGER PULL EXAMINATION - SPRING GAUGE The State of Alaska Crime Lab does not utilize spring gauges for the testing of trigger pulls. Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### FA-I-6 #### BARREL and OVERALL LENGTH MEASUREMENT of a FIREARM #### 1.0 INTRODUCTION 1.1 One of the routine procedures conducted in a firearm identification examination is determining the barrel length and in some cases the overall length of a firearm. Barrel length is defined as the distance between the end of the barrel and the face of the closed breechblock or bolt for firearms other than revolvers. On revolvers, it is the overall length of the barrel including the threaded portion within the frame. Barrel length normally should include compensators, flash hiders, etc., if permanently affixed. Overall length of a firearm is defined as the dimension measured parallel to the axis of the bore from muzzle to a line at right angles to the axis and tangent at the rearmost point of the butt plate or grip. Removable barrel extensions, poly chokes, flash hiders, etc., are not part of the measured barrel length or overall length. ## 1.2 OTHER RELATED PROCEDURES - 1.2.1 Physical Examination & Classification of Firearms - 1.2.2 Uncertainty of Measurement Study of ruler measurement (see Appendix 9). # 2.0 SAFETY CONSIDERATIONS - 2.1 This procedure involves hazardous materials, operations and equipment. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Proper caution must be exercised and the use of personal protective equipment must be considered. - 2.2 Appropriate hearing and eye protection must be worn when applicable. #### 3.0 PREPARATION #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### **3.1 NONE** #### 4.0 INSTRUMENTATION - 4.1 Ruler, and/or - 4.2 Tape Measurer, and/or - 4.3 Non-marring Dowel ## 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS 5.1 NONE #### 6.0 PROCEDURE or ANALYSIS 6.1 Care must be taken if any object is placed down the barrel to help facilitate the measurement. Only a non-marring item may be placed down the barrel, and only after all other examinations are performed #### 6.2 BARREL LENGTH: #### 6.2.1 REVOLVERS - 6.2.1.1 Measure the distance from the breech end of the barrel to the muzzle, excluding the cylinder. This measurement is done by placing a non-marring item down the barrel, marking the distance from the breech end of the barrel to the muzzle and measuring this item. - 6.2.1.2 This measurement will be recorded in inches as specified by laboratory policy. ## 6.2.2 FIREARMS OTHER THAN REVOLVERS: 6.2.2.1 Measure the distance from the breech face in a closed and locked position to the muzzle. This measurement can be done directly or by placing a non-marring item down the barrel, marking the distance from the breech end of the barrel to the muzzle and measuring this item. Page **19** of **241** #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 6.2.2.2 This measurement will be recorded in inches as specified by laboratory policy. #### 6.3 OVERALL LENGTH: 6.3.1 Measure the distance from the butt to the muzzle. Measurement shall be made parallel to the bore and record in inches as specified by laboratory policy. ## 6.4 INTERPRETATION OF RESULTS: 6.4.1 Measurements obtained should be considered only approximations based on the device used to obtain the measurements. These measurements are usually measured as specified by laboratory policy. #### 7.0 APPROPRIATE APPENDICES 7.1 Appendices 4 - Worksheets #### 8.0 REFERENCES 8.1 "The Proper Method for Measuring Weapons", AFTE Journal, Vo1.14, No. 3, p. 10. Page **20** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III ALL PRINTED COPIES ARE UNCONTROLLED Approved by: Firearm & Toolmark Supervisor Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### FA-II-1 #### **RUSTY FIREARM EXAMINATION** #### 1.0 INTRODUCTION 1.1 Rusty firearms or those found in water, etc. may be submitted for examination. Immediate attention must be given to wet firearms to prevent further damage to the firearm. The examiner should instruct an agency recovering the firearm in a fluid such as fresh water, to submit the tirearm in a container of the fluid. If this is not practical, the firearm can be sprayed with a product that displaces water. In case of firearms being recovered from salt water the examiner should instruct the agency to transport the firearm to the nearest facility where a potentially loaded gun can be handled safely. The gun should be immediately transported while completely submerged in water, either salt or fresh. The firearm should then be completely flushed of any residual salt water and silt. Once the gun is completely free of salt and silt then the procedure outlined in #6 below should be suggested to the agency. The actual procedures offered to the agency may be modified based on Trace evidence, Latent Fingerprint concerns, etc. It should be noted that the firearm may be too rusty to be functional. ## 1.2 OTHER RELATED PROCEDURES - 1.2.1 Safe Firearm Handling - 1.2.2 Physical Examination & Classification of Firearms ## 2.0 SAFETY CONSIDERATIONS 2.1 This procedure involves hazardous materials, operations and equipment. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Proper caution must be exercised and the use of personal protective equipment must be considered. #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 2.2 Appropriate hearing and eye protection must be worn when applicable. - 2.3 Any firearm that cannot be unloaded must be examined in an area designated for firing firearms (preferably a range). #### 3.0 PREPARATION **3.1 NONE** #### 4.0 INSTRUMENTATION **4.1 NONE** #### 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS **5.1 NONE** #### **6.0 PROCEDURE or ANALYSIS** - 6.1 Determine if the firearm is loaded and if it is, unload the firearm. If it cannot be readily verified to be unloaded it must be examined in an area designated for the firing of firearms. - 6.2 An examiner must take all necessary steps to insure that the firearm is unloaded. This may include the necessity of cutting the firearm apart. - 6.3 The examiner must determine to what extent restoring the firearm is necessary (i.e., for test firing, for recovering manufacturer information, serial number, etc.). - 6.4 Soak the firearm in penetrating oil, de-rusting solvents or similar material. - 6.5 Periodically check the firearm until the firearm functions, or the desired information is recovered. - 6.6 Clean the firearm with gun cleaning solvent and cleaning patches. Care must be taken if any object is placed down the barrel to help expedite the measurement. Only a non-marring item may be placed down the barrel, and only after all other tests are performed. Page **22** of **241** Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ## 7.0 APPROPRIATE APPENDICES 7.1 Appendices 4 - Worksheets #### **8.0 REFERENCES** 8.1 Denio, Dominic, "Making a Rusted Gun Functional," AFTE Journal, Vol. 13, No. 3, p. 29 Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### FA-II-2 #### SILENCER EXAMINATION #### 1.0 INTRODUCTION - 1.1 A silencer or sound suppressor is any device attached to the barrel of a firearm designed to reduce the noise of discharge. Silencers can be commercially produced or homemade. They are typically tubular metal devices, but may vary in shape or form. Even a 2-liter soda bottle can be used as a silencer. - 1.2 OTHER RELATED PROCEDURES - 1.2.1 Safe Firearm Handling - 1.2.2 Physical Examination &
Classification of Firearms #### 2.0 SAFETY CONSIDERATIONS - 2.1 This procedure involves hazardous materials, operations and equipment. This procedure does not purpor to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Proper caution must be exercised and the use of personal protective equipment must be considered. - 2.2 Appropriate hearing and eye protection must be worn when applicable. # 3.0 PREPARATION 3.1 NONE #### 4.0 INSTRUMENTATION 4.1 NONE #### 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS **5.1 NONE** Page **24** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III ALL PRINTED COPIES ARE UNCONTROLLED Approved by: Firearm & Toolmark Supervisor #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### **6.0 PROCEDURE or ANALYSIS** - 6.1 Examine device to determine if it is, or is characteristic of, a silencer or sound suppression device. - 6.2 Examiner will document and record his/her findings. After an initial examination, a report can be issued that the device is, or is characteristic of, a silencer or sound suppression device. - 6.3 Testing of a firearm and firearm/silencer combination must be conducted in an appropriate setting, usually a range. The report of the firearm discharge with and without the silencer attached will be subjectively assessed while wearing hearing protection. Once it is ascertained that the silencer is capable of attenuating the report to a safe level, additional assessment of the silenced report can be done without hearing protection. - 6.4 The examiner must consider assessing multiple reports both with the silencer affixed to the firearm and the firearm alone. #### 7.0 APPROPRIATE APPENDICES 7.1 Appendices 4 - Worksheets #### **8.0 REFERENCES** - 8.1 Silencers A Review and a Look at the State of the Art," AFTE Journal, Vol. 23, No. 2, p. 668. - 8.2 Crum, Richard A and Owen, Edward M., "Silencer Testing," AFTE Journal, Vol. 21, No. 2, p. 433. Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### FA-II-3 #### MALFUNCTIONING FIREARM EXAMINATION #### 1.0 INTRODUCTION 1.1 A firearm examiner may be called upon to examine a firearm to determine if the firearm will malfunction. The majority of these cases deal with the question "Will the firearm fire without pulling the trigger?" In these examinations, it is the goal of the examiner to acquire a detailed account of the incident by thoroughly examining and testing the firearm. This may include external and internal examinations, x-ray examinations, or striking or dropping the firearm in attempts to duplicate the actions of the firearm at the time of discharged. The examiner should attempt to keep the firearm in the same condition as received. However, there may be times that the original condition of the firearm may be altered in attempts to determine the cause of the malfunction. During these times, the examiner must specifically document these changes in his/her notes. The requesting agency officer may or may not be contacted, as this is a routine function for a firearm examiner. See FA- II-5 (Reference Collection) for discussion of the use of reference firearm parts to apply temporary fixes to damaged or incomplete firearms. ## 1.2 OTHER RELATED PROCEDURES - 1.2.1 Safe Firearm Handling - 1.2.2 Primed Cases ## 2.0 SAFETY CONSIDERATIONS 2.1 This procedure involves hazardous materials, operations and equipment. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Proper caution must be exercised and the use of personal protective equipment must be considered. #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 2.2 Appropriate hearing and eye protection must be worn when applicable. #### 3.0 PREPARATION **3.1 NONE** #### 4.0 INSTRUMENTATION 4.1 NONE ## 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS 5.1 NONE #### **6.0 PROCEDURE or ANALYSIS** - 6.1 No one procedure can sufficiently outline the steps necessary to examine all firearms for any malfunction. However, the following list of examinations should serve as a guideline for the examiner - 6.1.1 Physical Check (Condition of Firearm as Received): - 6.1.1.1 Cocked/uncocked - 6.1.1.2 Safety position - 6.1.1.3 Loaded/unloaded - 6.1.1.4 Cartridge position - 6.1.1.5 Stuck cartridges/discharged cartridge cases - 61.1.6 Presence and/or location of flares - 6.1.1.7 If the firearm is to be x-rayed, this may be the time to do it. - 6.1.2 Visual Abnormalities: - 6.1.2.1 Barrel (loose, etc.) - 6.1.2.2 Receiver (condition) - 6.1.2.3 Slide (condition) Page **27** of **241** #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 6.1.2.4 Parts broken or missing especially; - 6.1.2.4.1 the firing pin, - 6.1.2.4.2 the ejector or - 6.1.2.4.3 the extractor - 6.1.2.5 Screws (loose or missing) - 6.1.2.6 Alterations or adaptations - 6.1.2.7 Sights - 6.1.3 Action (External): - 6.1.3.1 Are the relationships of the action parts correct? - 6.1.3.2 Is the assembly correct? - 6.1.3.3 Does the action lock normally on closing? - 6.1.3.4 Cylinder rotation (securely locks). - 6.1.3.5 Hand relationship to the ratchet (worn). - 6.1.3.6 Trigger (not returning, sticks, broken spring, etc.) - 6.1.3.7 Check the trigger pull (single action, double action) and striking of hammer. - 6.1.4 Safeties: - 6.1.4.1 1/4, 1/2, full cock, seating check (any false seating positions, pull off/push off, etc.) - 6.1.4.2 Grip, magazine, and disconnector: function - 6.1.4.3 Thumb/finger note positions when firearm will fire - 6.1.4.4 Rebound hammer or inertia firing pin - 6.1.4.4.1 Will firing pin ride on primers? Page **28** of **241** Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 6.1.4.4.2 Is firing pin frozen or bent? - 6.1.4.4.3 (Drop hammer several times to check above safeties.) - 6.1.4.5 Does the slide or bolt have to be completely closed to fire? - 6.1.4.6 Can the safeties be bypassed? - 6.1.4.6.1 Will dropping hammer bypass safeties? (This may require primed cartridge tests.) - 6.1.4.6.2 Will a light blow on the rear of the hammer, when it is in battery, discharge the primer? - 6.1.4.6.3 Is the firing pin impression significantly off center (both single action and double action operation)? - 6.1.5 Action Check: - 6.1.5.1 Check feeding - 6.1.5.1.1 magazine - 6.1.5.1.2 carrier or lifter - 6.1.5.1.3 feed ramp - 6.1.5.1.4 magazine lips, etc. - 6.1.5.2 Will a cartridge fire on closing of the bolt or slide? - 6.1.5.3 Extractor and/or ejector markings on evidence cartridges/discharged cartridge cases consistent and/or normal? - 6.1.5.4 Unusual marks exhibited on the cartridges/discharged cartridge cases. - 6.1.6 Check for any inherent "quirks" known about the particular firearm based on literature or case data. Page **29** of **241** #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 6.1.7 Test Fire Firearm (note operation, misfires, etc.): - 6.1.7.1 Note any operational problems. - 6.1.7.2 Ammunition involved (proper cartridge, type, reloads, etc.). - 6.1.7.3 Check consistency of the impression on test and evidence. - 6.1.8 Special Situational Tests: - 6.1.8.1 Discretion should be considered in situational testing if the force needed could disturb the internal action and/or cause changes, which might prevent determining the exact cause of the malfunction. - 6.1.9 Action (Internal) - 6.1.9.1 Hammer notch(s) 6.1.9.1.1 Work 6.1.9.1.2 Burrs 6.1.9.1.3 Dirt, etc. 6 1.9 2 Sear 6.1.9.2.1 Worn 6.1.9.2.2 Broken 6.1.9.2.3 Burrs, etc 6.1.9.3 Safeties (relationships and general parts relationship). 6.1.9.4 Springs 6.1.9.4.1 Weak 6.1.9.4.2 Broken 6.1.9.4.3 Altered, etc Page **30** of **241** Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 6.1.9.5 Signs of any tampering or faulty assembly. #### 7.0 APPROPRIATE APPENDICES 7.1 Appendices 4 - Worksheets #### **8.0 REFERENCES** 8.1 Thompson, Roger C., "Firearms Malfunction Worksheets," AFTE Journal, Vol. 15, No. 1, p. 100. 8.2 American National Standards Institute, Inc., "American National Standard Voluntary Industry Performance Standards Criteria for Evaluation of New Firearms Designs Under Conditions of Abusive Mishandling for the Commercial Manufacturers". (ANSIISAAMI 2299.5-1 985), November 1985. Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### FA-II-4 #### **BORE CHAMBER CASTING** #### 1.0 INTRODUCTION - 1.1 Occasionally, firearms are received for which the caliber may not be known or may be different than is designated on the firearm and in the literature. In order to facilitate firing of test shots that are of the correct caliber for a particular firearm, it may be necessary to make a bore and/or chamber cast. Then, by measuring the cast, the correct cartridge can be determined. - 1.2 OTHER RELATED PROCEDURES - 1.2.1 Safe Firearm Handling #### 2.0 SAFETY CONSIDERATIONS - 2.1 This procedure involves hazardous materials, operations and equipment. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Proper caution must be exercised and the use of
personal protective equipment must be considered. - 2.2 Appropriate hearing and eye protection must be worn when applicable. #### 3.0 PREPARATION 3.1 NONE #### 4 0 INSTRUMENTATION 4.1 NONE #### 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS **5.1 NONE** #### 6.0 PROCEDURE or ANALYSIS Technical Leader: Robert J. Shem, Forensic Scientist III ALL PRINTED COPIES ARE UNCONTROLLED Approved by: Firearm & Toolmark Supervisor #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 6.1 Casts can be made using various casting materials such as low melting point metals and silicone rubber compounds. The procedure below is for Mikrosil™ and Cerrosafe™. - 6.1.1 Insure that the firearm is unloaded. - 6.1.2 Open the action and remove the bolt or bolt assembly. - 6.1.3 Check the bore to make sure it is clear. - 6.1.4 Push a cleaning patch in the barrel, from muzzle end, until it is about 1/4 inch from the beginning of the chamber. - 6.1.5 Oil the chamber with gun oil or a silicone spray (e.g., WD 40™). - 6.1.6 Mix Mikrosil™ as per manufacture instructions or melt Cerrosafe™ and carefully pour into the chamber until full. - 6.1.7 Do not allow casting material to flow into breech. It will make extraction difficult. - 6.1.8 When casting material is set or cool, depending on type used, gently tap end of cleaning rod to loosen cast from the chamber and remove from the breech. - 6.1.9 If the cast, for some reason, cannot be loosened from the chamber, Cerrosafe can be melted out of the barrel. This is accomplished by removing the stock and placing breech end in a large container of water and heating to just above its melting temperature. - 6.1.10 Cerrosafe™ can be reused as necessary. - 6.1.11 Mikrosil™ has to be pushed/forced out and is not reusable. Therefore, it is undesirable to let any more of the casting material than necessary go into the barrel. - 6.1.12 The same steps may be used in the casting of the bore. However in bore casting, usually only the last three (3) inches of the bore need to be cast. #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### **6.2 INTERPRETATION OF RESULTS:** 6.2.1 The correct caliber of the firearm can be determined by measuring the mouth, base, overall length, rim (if pertinent), and shoulder length of the cast. #### 7.0 APPROPRIATE APPENDICES **7.1 NONE** #### 8.0 REFERENCES 8.1 Striupaitis, Peter P., "Bore Casting Techniques for Caliber Designation of Rifles," AFTE Journal, Vol. 15, No. 2, p. 88. 8.2 Poole, Robert A., "Mikrosil Casting Material Information," AFTE Journal, Vol. 15, No. 2, p. 80. Page **34** of **241** Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### FA-II-5 #### FIREARM REFERENCE COLLECTION #### 1.0 INTRODUCTION - 1.1 A Firearm Reference Collection is maintained by the laboratory for various scientific reasons, to include: - 1.1.1 To identify the make, model, and source of evidence firearms. - 1.1.2 To provide exemplar firearms for various scientific testing purposes which might otherwise compromise an evidence firearm. - 1.1.3 To provide an exemplar resource for training new forensic scientists/evidence technicians or in developing new technology for the scientific examination of firearms. - 1.1.4 To provide a source of firearms parts for the temporary repair of evidence firearms for test-firing purposes. - 1.1.5 To provide a resource for the identification of firearms parts recovered at a crime scene. - 1.1.6 To provide a resource for the location and style of firearm serial numbers. ## 1.2 OTHER RELATED PROCEDURES - 1.2.1 Safe Firearm Handling - 1.2.2 Ammunition Reference Collection ## 2.0 SAFETY CONSIDERATIONS 2.1 This procedure involves hazardous materials, operations and equipment. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived regulatory limitations prior to use. Proper caution must be exercised and the use of personal protective equipment must be considered. #### 3.0 PREPARATION **3.1 NONE** #### 4.0 INSTRUMENTATION 4.1 NONE # 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS 5.1 NONE #### 6.0 PROCEDURE or ANALYSIS - 6.1 A Firearm Reference Collection must be maintained under strict regulations and controls. Firearms which are deemed unsuitable for scientific purposes should be verifiably destroyed. The laboratory and specifically the firearm identification section normally assumes all responsibility for security, control and disposition of these firearms. - 6.2 A record should be made as soon as practical after the receipt of a firearm intended for the reference collection, into a "CRIME LAB GUN COLLECTION" log. This entry should include, where applicable; - 6.2.1 Lab Log number (each gun added to the collection is given the next sequential number, eg. yyA####, where "yy" is the year, "A" indicates the Anchorage-based Crime Lab location, and "#### is a sequential number, starting with 0001 assigned to the first gun of the year) - 6.2.2 Storage location (the specific nail peg, or shelf location, etc.) - 6.2.3 Caliber - 6.2.4 Make - 6.2.5 Model - 6.2.6 Serial Number Page **36** of **241** #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 6.2.7 Gun type - 6.2.8 NCIC code - 6.2.9 "Status" of the firearm (whether it is currently in the collection or not) - 6.2.10 Disposition (once the firearm leaves the collection) - 6.2.11 Any previously assigned agency case number. - 6.3 The "CRIME LAB FIREARM COLLECTION" log is a computerized database which is tracked in the Crime Laboratory's LIMS (Laboratory Information Management System). The information recorded for each firearm is listed in 6.2 above. - 6.4 If the submitting agency does not accompany the firearms with an official transfer form, it is recommended that a receipt be issued for every firearm received for the reference collection or destruction utilizing a standardized form. The respective log number assigned to each firearm should be recorded on this form. Copies of all documents accompanying a firearm will be scanned and stored in the laboratory's LIMS. - 6.5 The firearm reference collection should be displayed and maintained in such a manner as to prevent deterioration to the firearms and to facilitate their inventory, safety and control. - 6.6 All firearms received for reference or disposal should have their assigned log number inscribed on the frame and/or receiver. Furthermore, all firearms placed in the reference collection should be tagged or marked in such a manner so as to display that firearm's location within the collection. ## 7.0 APPROPRIATE APPENDICES 7 1 NONE #### 8.0 REFERENCES 8.1 AFTE Glossary, 3rd Edition Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### FA-II-6 #### AMMUNITION REFERENCE COLLECTION #### 1.0 INTRODUCTION - 1.1 The Ammunition Reference Collection is defined as a collection or cataloging of both cartridges and components utilized for various scientific reasons, to include: - 1.1.1 To identify the manufacturer's cartridge designation and source of evidence ammunition or component parts thereof. - 1.1.2 To provide an exemplar resource for training new forensic scientists/evidence technicians on in developing new technology for the scientific examination of firearms. - 1.1.3 To provide a resource for the identification of ammunition components recovered at a crime scene. ## 1.2 OTHER RELATED PROCEDURES - 1.2.1 Safe Firearm Handling - 1.2.2 Firearms Reference Collection ## 2.0 SAFETY CONSIDERATIONS 2.1 This procedure involves hazardous materials, operations and equipment. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Proper caution must be exercised and the use of personal protective equipment must be considered. #### 3.0 PREPARATION **3.1 NONE** Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ### 4.0 INSTRUMENTATION **4.1 NONE** ## 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS **5.1 NONE** ## 6.0 PROCEDURE or ANALYSIS - 6.1 The nature of the laboratory's ammunition reference collection will be dictated or limited by the space, storage containers and computer equipment available. However the following should be considered; - 6.1.1 Use of architect blue print cabinets or similar style cabinets for storage of the collection. - 6.1.2 Use of clear plastic tubes or boxes for storage of each ammunition entry, each entry consisting of at least one whole cartridge and one cartridge broken down into its component parts. - 6.1.3 Recording cartridge information such as: - 6.1.3.1 Manufacturer - 6.1.3.2 Bullet weight - 61.3.3 Bullet style or configuration - 6.1.3.4 Manufacturer's Index - 61.3.5 Headstamp - 6.1.3.6 Other pertinent information - 6.1.4 Each item in the Firearms Bullet Collection is to be uniquely identified and documented. The collection will be housed in storage containers utilizing caliber and/or other manufacturer's data as appropriate to organize. When a comparison is made and reported, the specific ammunition reference standard utilized must be identified in the case file. Page **39** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III ALL PRINTED COPIES ARE UNCONTROLLED Approved by: Firearm & Toolmark Supervisor Firearm and Toolmark Procedure Manual Issued:
7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 6.1.5 A spreadsheet will be created that contains a listing of all handgun and long gun ammunition in the collection. This spreadsheet will be routinely maintained to reflect changes. ## 7.0 APPROPRIATE APPENDICES **7.1 NONE** ## 8.0 REFERENCES 8.1 AFTE Glossary, 3rd Edition Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ### FA-III-1 #### WATER RECOVERY TANK #### 1.0 INTRODUCTION 1.1 In order to perform a microscopic comparison of a submitted firearm, a minimum of two test shots (or test fires) should be fired and recovered. Recovery methods include the water tank, the cotton waste recovery box, and the bullet trap. The type of firearm and ammunition tested will usually dictate the type of recovery method used. The water recovery tank is usually used to recover bullets from handguns, rifles, and slugs fired from shotguns. Test shots or test fires are treated as evidence, and therefore - given a unique item number, - tracked from the time of creation, and - packaged for return to the agency with the firearm used to produce them. ## 1.2 OTHER RELATED PROCEDURES - 1.2.1 Safe Firearm Handling - 1.2.2 Remote Firing - 1.2.3 Downloading - 1.2.4 Primed Cases ## 2.0 SAFETY CONSIDERATIONS - 2.1 This procedure involves hazardous materials, operations and equipment. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Proper caution must be exercised and the use of personal protective equipment must be considered. - 2.2 Appropriate hearing and eye protection must be used. #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 2.3 The examiner must consider the practicality and/or desirability of wearing some form of bullet resistant clothing. - 2.4 One should be aware of the maximum velocity of the projectile that can be fired into a particular water tank, as well as the proper water depth needed for firing. ## 3.0 PREPARATION **3.1 NONE** #### 4.0 INSTRUMENTATION **4.1 NONE** ## 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS **5.1 NONE** #### 6.0 PROCEDURE or ANALYSIS - 6.1 The examiner should consider marking the bullet and cartridge case of each test shot with: - 6.1.1 laboratory case number and/or - 6.1.2 item number and/or - 6.1.3 examiner's markings. - 6.2 The examiner should consider indexing and sequencing each shot and perform these functions if necessary. - 6.3 Proper hearing and eye protection must be worn. - 6.4 Ensure that the water level is appropriate. - 6.5 Ensure that all lids or doors of the water recovery tank are closed. - 6.6 Ensure that the exhaust fans or system is turned on. - 6.7 Ensure that the range door is closed. #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 6.8 The examiner should consider loading no more than two (2) cartridges into the firearm during the initial testing of the firearm. - 6.9 Fire the firearm through the shooting port. If the firearm is capable of firing both single and double action modes, a minimum of one (1) shot per mode should be obtained. - 6.10 Recover the bullets using a net, pole, or some other appropriate devices - 6.11 Ejected discharged cartridge cases must be retrieved. Devices to catch the discharged cartridge cases are commercially available. #### 7.0 APPROPRIATE APPENDICES **7.1 NONE** #### 8.0 REFERENCES - 8.1 "New Ballistics Tank from Detroit-Armor Corporation Allows Fast Recovery Without Projectile Distortion." AFTE Journal, Vol. 16, No. 3, p.106. - 8.2 "Bullet and Cartridge Case Recovery", AFTE Journal, Vol. 16, No. 2, p.75. Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ### FA-III-2 #### **COTTON RECOVERY BOX** #### 1.0 INTRODUCTION 1 .1 In order to perform a microscopic comparison of a submitted firearm, a minimum of two test shots (or test fires) will be fired and recovered. Recovery methods include the water tank, the cotton waste recovery box, and the bullet trap. The type of firearm and ammunition tested will usually dictate the type of recovery method used. The cotton waste recovery box is usually used to recover bullets from handguns, rifles, and slugs fired from shotguns. Test shots or test fires are treated as evidence, and therefore. - given a unique item number, - tracked from the time of creation, and - packaged for return to the agency with the firearm used to produce them. ## 1.2 OTHER RELATED PROCEDURES - 1.2.1 Safe Firearm Handling - 1.2.2 Remote Firing - 1.2.3 Downloading - 1.2.4 Primed Cases ## 2.0 SAFETY CONSIDERATIONS - 2.1 This procedure involves hazardous materials, operations and equipment. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Proper caution must be exercised and the use of personal protective equipment must be considered. - 2.2 Appropriate hearing and eye protection must be used. #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 2.3 The examiner must consider the practicality and/or desirability of wearing some form of bullet resistant clothing. - 2.4 One should be aware of the maximum velocity of the projectile that can be fired into a particular cotton recovery box. ### 3.0 PREPARATION **3.1 NONE** #### 4.0 INSTRUMENTATION **4.1 NONE** # 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS **5.1 NONE** #### 6.0 PROCEDURE or ANALYSIS - 6.1 The examiner should consider marking the bullet and cartridge case of each test fire with: - 6.1.1 the laboratory case number and/or - 6.1.2 the item number and/or - 6.1.3 the examiner's markings. - 6.2 The examiner should consider indexing and sequencing each shot and perform these functions if necessary. - 6.3 Proper hearing and eye protection must be worn. - 6.4 The examiner should consider wetting the first section of cotton in the box. - 6.5 The examiner should consider the placement of paper partitions at various points in box to ensure tracking of the test shot, as well as insuring that the cotton is packed down so as not to retain previous bullet paths. - 6.6 Ensure that the lid of the box is closed. ## Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 6.7 Ensure that the exhaust fans or system is turned on. - 6.8 Ensure that the range door is closed. - 6.9 The examiner should consider loading no more than two (2) cartridges into the firearm during the initial testing of the firearm. - 6.10 Fire the firearm through the shooting port. If the firearm is capable of firing both single and double action modes, a minimum of one (1) shot per mode should be obtained. - 6.11 Bullets should be recovered by searching through cotton, using partitions as guides. - 6.12 Ejected cartridge cases must be retrieved. Devices to catch the discharged cartridge cases are commercially available. ## 7.0 APPROPRIATE APPENDICES **7.1 NONE** #### 8.0 REFERENCES - 8.1 AFTE Journal, February 1973, p.9. - 8.2 AFTE Newsletter, 16, p.17 - 8.3 "Bullet and Cartridge Case Recovery", AFTE Journal, Vol. 16, No. 2, p.75. Page **46** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III ALL PRINTED COPIES ARE UNCONTROLLED Approved by: Firearm & Toolmark Supervisor Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ## FA-III-3 #### **BULLET TRAP** #### 1.0 INTRODUCTION 1.1 In order to perform a microscopic comparison of a submitted firearm, a minimum of two test shots or test fires should be fired and recovered. Recovery methods include the water tank, the bullet recovery box (or cotton box), and the bullet trap. The type of firearm and ammunition tested will usually dictate the type of recovery method used. The bullet trap is usually used to test fire firearms when the recovery of the fired projectile(s) is not necessary. Test shots or test fires are treated as evidence, and therefore: - given a unique item number. - tracked from the time of creation, and - packaged for return to the agency with the firearm used to produce them. ## 1.2 OTHER RELATED PROCEDURES - 1.2.1 Safe Firearm Handling - 1.2.2 Remote Firing - 1.2.3 Downloading - 1.2.4 Primed Cases ## 2.0 SAFETY CONSIDERATIONS - 2.1 This procedure involves hazardous materials, operations and equipment. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Proper caution must be exercised and the use of personal protective equipment must be considered. - 2.2 Appropriate hearing and eye protection must be used. Page **47** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III ALL PRINTED COPIES ARE UNCONTROLLED Approved by: Firearm & Toolmark Supervisor #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 2.3 The examiner must consider the practicality and/or desirability of wearing some form of bullet resistant clothing. 2.4 One should be aware of the maximum velocity of the projectile that can be fired into a particular bullet trap (the current range backstop is said to be capable of absorbing the impact of a 30-06 caliber lead core bullet. For more powerful loads, testing must be done either at an
outdoor range facility or the test fired bullets can be fired into an intermediary material, such as a cardboard box filled with paper, which is placed in front of the backstop. It is advisable to consider test firing through intermediary material whenever testing any centerfire rifle. In no cases should armor-piercing or other ammunition designed for perforating hard materials, such as steel, be fired in the bullet trap). ### 3.0 PREPARATION 3.1 NONE #### 4.0 INSTRUMENTATION **4.1 NONE** ## 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS **5.1 NONE** ## 6.0 PROCEDURE or ANALYSIS - 6.1 The examiner should consider marking the cartridge case and/or shotshell of each test shot with the: - 6.1.1 the laboratory case number and/or - 6.1.2 the item number and/or - 6.1.3 the examiner's markings. - 6.2 The examiner should consider indexing and sequencing each shot and perform these functions if necessary. - 6.3 Proper hearing and eye protection must be worn. Technical Leader: Robert J. Shem, Forensic Scientist III Approved by: Firearm & Toolmark Supervisor ## Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 6.4 Ensure that the exhaust fans or system is turned on. - 6.5 Ensure all warning systems are activated. - 6.6 The examiner should consider loading no more than two (2) cartridges into the firearm during the initial testing of the firearm. - 6.7 Fire the firearm into the front of the trap. If the firearm is capable of firing both single and double action modes, a minimum of one (1) shot per mode should be obtained. - 6.8 Ejected cartridge cases must be retrieved. Devices to catch the discharged cartridge cases are commercially available. ## 7.0 APPROPRIATE APPENDICES #### 8.0 REFERENCES - 8.1 McBrayer, William S., "What? Another Water Tank and Bullet Stop!" AFTE Journal, Vol. 10, No. 2, p.90. - 8.2 "Bullet and Cartridge Case Recovery", AFTE Journal, Vol. 16, No. 2, p.75 Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### FA-III-4 #### **REMOTE FIRING** #### 1.0 INTRODUCTION - 1.1 During the course of examining a firearm, it may be determined that it would be unsafe for the examiner to fire the firearm by holding it as designed. If it is necessary to obtain test standards from this firearm, the firearm should be fired remotely. The Zero-One[™] (or a similar device) can be utilized for firing long arms and some handguns, while the Ransom Rest[™] (or a similar device) can be utilized for firing handguns. - 1.2 OTHER RELATED PROCEDURES - 1.2.1 Safe Firearm Handling - 1.2.2 Downloading - 1.2.3 Primed Cases ## 2.0 SAFETY CONSIDERATIONS - 2.1 This procedure involves hazardous materials, operations and equipment. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Proper caution must be exercised and the use of personal protective equipment must be considered. - 2.2 Appropriate hearing and eye protection must be used. - 2.3 The examiner must consider the practicality and/or desirability of wearing some form of bullet resistant clothing. - 2.4 The examiner must follow all safety recommendations set forth by the manufacturer of the shooting device used. Page **50** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III ALL PRINTED COPIES ARE UNCONTROLLED Approved by: Firearm & Toolmark Supervisor #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 2.5 Due to the potential hazard of the firearm malfunctioning or undergoing a catastrophic failure, the examiner must be stationed behind a protective shield or at a safe distance from the firearm when discharging the firearm. #### 3.0 PREPARATION **3.1 NONE** ### 4.0 INSTRUMENTATION 4.1 NONE # 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS **5.1 NONE** #### 6.0 PROCEDURE or ANALYSIS - 6.1 The examiner should consider marking the bullet, cartridge case and/or shotshell of each test shot with the: - 6.1.1 laboratory case number and/o - 6.1.2 item number and/or - 6.1.3 examiner's markings. - 6.2 The examiner should consider indexing and sequencing each shot and perform these functions if necessary. - 6.3 Proper hearing and eye protection must be worn. - 6.4 Set up the chosen remote firing device, as per guidelines set forth by the manufacturer, in front of the appropriate recovery system. - 6.5 Place firearm in device. It is recommended that the examiner first dry-fire the firearm in the remote firing device before using live ammunition. - 6.6 Ensure that the exhaust fans or system is turned on. - 6.7 Ensure that the range door is closed. Page **51** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III Approved by: Firearm & Toolmark Supervisor ## Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 6.8 The examiner should consider loading no more than one cartridge into the firearm during the initial testing of the firearm. - 6.9 Activate the remote device while standing behind a protective shield or while standing at a safe distance away from the firearm. - 6.10 Obtain fired tests. ### 7.0 APPROPRIATE APPENDICES **7.1 NONE** ### **8.0 REFERENCES** 8.1 Biasotti, A. A., "Vise/Rest for Remote Firing," AFTE Journal, Vol. 11, No. 4, p.16. Page **52** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III Approved by: Firearm & Toolmark Supervisor Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ### FA-III-5 #### **DOWNLOADING** #### 1.0 INTRODUCTION 1.1 Due to the limitations of the firearm identification section's bullet recovery devices, it may be necessary to reduce or change the powder load of the cartridge in order to obtain a velocity suitable for safely collecting test standards for comparison purposes. Even with a reduced load, it may be necessary to fire the firearm remotely. #### 1.2 OTHER RELATED PROCEDURES - 1.2.1 Safe Firearm Handling - 1.2.2 Remote Firing - 1.2.3 Primed Cases - 1.2.4 Water Tank Recovery - 1.2.5 Cotton Waste Recovery Box - 1.2.6 Bullet Trap ## 2.0 SAFETY CONSIDERATIONS - 2.1 This procedure involves hazardous materials, operations and equipment. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Proper caution must be exercised and the use of personal protective equipment must be considered. - 2.2 Appropriate hearing and eye protection must be used. #### 3.0 PREPARATION 3.1 NONE #### 4.0 INSTRUMENTATION Technical Leader: Robert J. Shem, Forensic Scientist III ALL PRINTED COPIES ARE UNCONTROLLED Approved by: Firearm & Toolmark Supervisor Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ### 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS **5.1 NONE** #### **6.0 PROCEDURE or ANALYSIS** - 6.1 Pull the bullet of the cartridge using an inertia bullet puller or a reloading press. - 6.2 Remove existing powder. - 6.3 Weigh the pulled bullet. - 6.4 Consult a reloading manual, such as the Speer Reloading Manual which contains data for reduced loads, and obtain the powder charge for the weight of the pulled bullet and the new velocity needed. - 6.5 Weigh out the appropriate powder charge and place in existing cartridge case. - 6.6 Seat the bullet back into the cartridge case using a mallet or a reloading press. - 6.7 If appropriate powder is not available, a reduced load using 50% of the original powder can be used. It should be noted that great care must be taken when performing this type of downloading. 50% downloading CANNOT be used with slow burning powders. 50% downloading CANNOT be used with many non-canister powders. In these situations, a small wad of tissue paper should be placed above the gunpowder to hold the gunpowder against the flash hole. - 6.8 When utilizing downloaded ammunition it is imperative that the examiner checks the barrel for obstructions between each firing. The bullet, cartridge case, or shotshell of each test shot should be marked appropriately. ## 7.0 APPROPRIATE APPENDICES 7.1 Appendix 3 - Calibration Standards #### 8.0 REFERENCES Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 8.1 Lyman Reloading Handbook for Rifle, Pistol and Muzzle Loading, Lyman Gun Sight Products, Middlefield, Conn., 1971. 8.2 "Reduced Powder Loads," AFTE Newsletter, No. 3, p.14. Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### FA-III-6 ## PRIMED CARTRIDGE CASE/SHOTSHELL #### 1.0 INTRODUCTION 1.1 During the course of examining a firearm, it may be determined that it would be unsafe for the examiner to fire the firearm as designed. If it is not necessary to obtain test standards for comparison purposes, the firing condition of the firearm can be tested using a primed empty cartridge case or shotshell. #### 1.2 OTHER RELATED PROCEDURES - 1.2.1 Safe Firearm Handling - 1.2.2 Bullet Trap #### 2.0 SAFETY CONSIDERATIONS - 2.1 This procedure involves hazardous materials, operations and equipment. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Proper caution must be exercised and the use of personal protective equipment must be considered. - 2.2 Appropriate hearing and eye
protection must be used. - 2.3 The examiner must consider the practicality and/or desirability to wear some form of bullet resistant clothing. #### 3.0 PREPARATION 3.1 NONE #### 4.0 INSTRUMENTATION **4.1 NONE** ### 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS Page **56** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III ALL PRINTED COPIES ARE UNCONTROLLED Approved by: Firearm & Toolmark Supervisor Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### **5.1 NONE** #### 6.0 PROCEDURE or ANALYSIS - 6.1 Obtain a primed empty cartridge case in the desired caliber or pull the bullet of a live cartridge using an inertia bullet puller or reloading press, retaining only the primed cartridge case. For shotguns, obtain a primed empty shotshell in the desired gauge or cut open a live shotshell removing all components, retaining only the primed shotshell. - 6.1.1 Commercial firing pin testing devices are available for shotguns and may be used. - 6.2 Proper hearing and eye protection must be worn. - 6.3 Ensure that the exhaust fans or system is turned on - 6.4 Ensure that the range door is closed. - 6.5 Load the primed empty cartridge case, primed empty shotshell or commercial firing pin testing device into the chamber of the firearm and test fire in front of the bullet trap. - 6.6 When utilizing a primed empty it is imperative that the examiner checks the barrel for obstructions between each firing. - 6.7 Repeat if the firearm has more than one action. - 6.8 Obtain all tests ## 7.0 APPROPRIATE APPENDICES 7 1 NONE #### 8.0 REFERENCES 8.1 NONE Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### FA-IV-1 #### **CALIBER DETERMINATION** #### 1.0 INTRODUCTION - 1 .1 Caliber, or the base diameter, is one of the class characteristics of a fired bullet. The determination of caliber will aid the examiner during the identification or elimination of a suspect firearm. If no firearm is submitted, the bullet's caliber may be used in determining the General Rifling Characteristics of the firearm involved. - 1.2 OTHER RELATED PROCEDURES - 1.2.1 Trace Material Examination - 1.2.2 GRC Utilization #### 2.0 SAFETY CONSIDERATIONS - 2.1 This procedure may also involve hazardous materials to include evidence that may be contaminated with a biohazard. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. - 2.2 Proper caution to include strict adherence to Universal Precautions and the Blood Borne Pathogen Plan must be exercised. - 2.3 The use of personal protective equipment must be considered to avoid exposure to any potential hazards. # 3.0 PREPARATION 3. NONE #### 4.0 INSTRUMENTATION 4.1 Comparison Microscope #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 4.2 Stereomicroscope - 4.3 Calipers/Micrometer ## 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS **5.1 NONE** #### 6.0 PROCEDURE or ANALYSIS - 6.1 The following may be utilized to determine the caliber of any fired bullet. The condition of the bullet will determine which steps can be used. - 6.1.1 Compare the base diameter of the evidence bullet directly with known unfired and/or fired test standards. - 6.1.2 Measure the base diameter of the evidence bullet using a measuring device and compare this measurement with known measurements published in reference literature. - 6.1.3 Determine the number and widths of the lands and grooves and compare to Appendix G, Table 6, of the AFTE Glossary (3rd Edition). - 6.1.4 Physical characteristics of the evidence bullet, such as weight, bullet shape, composition, nose configuration, and number and placement of cannelures may aid in caliber determination. ## 6.2 INTERPRETATION OF RESULTS: 6.2.1 Caliber is written as a numerical term without the decimal point. If the base is mutilated, the examiner may only be able to determine that the evidence is consistent with a range of calibers or that the caliber cannot be determined. ## 7.0 APPROPRIATE APPENDICES - 7. Appendix 3 Calibration Standards - 7.2 Appendix 4 Worksheets #### 8.0 REFERENCES ## Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 8.1 Mathews, J. Howard, Firearms Identification Vol. 1, 1973. - 8.2 Barnes, Frank C., Cartridges of the World, 7th Edition, 1993. - 8.3 Association of Firearm and Toolmark Examiners Glossary, 3rd Edition, 1994. - 8.4 Lutz, Monty C. and Ward, John G., "Determination of Bullet Caliber from an X-ray," AFTE Journal, Vol. 21, No. 2, p. 168. Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ## FA-IV-2 ## **MEASURING PROJECTION SCOPE** The State of Alaska Crime Lab does not employ a measuring projection scope in the Firearm/Toolmark Section. Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ## FA-IV-3 #### **AIR GAP** #### 1.0 INTRODUCTION 1.1 One of the class characteristics used in the discipline of firearn identification is the width of the land impressions and groove impressions. These measurements aid the examiner during the identification or elimination of a suspect firearm. If no firearm is submitted, these measurements will be used in determining the General Rifling Characteristics of the firearm involved. Several instruments can be used to obtain these measurements. The air gap procedure utilizes a comparison microscope and a micrometer. ## 1.2 OTHER RELATED PROCEDURES - 1.2.1 Trace Material Examination - 1.2.2 GRC Utilization - 1.2.3 Stereomicroscope Micrometer - 1.2.4 Stereomicroscope Ruler - 1.2.5 Stereomicroscope Grid - 1.2.6 Measuring Projection Scope ## 2.0 SAFETY CONSIDERATIONS - 2.1 This procedure may also involve hazardous materials to include evidence that may be contaminated with a biohazard. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. - 2.2 Proper caution to include strict adherence to Universal Precautions and the Blood Borne Pathogen Plan must be exercised. #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 2.3 The use of personal protective equipment must be considered to avoid exposure to any potential hazards. #### 3.0 PREPARATION **3.1 NONE** #### 4.0 INSTRUMENTATION 4.1 Comparison Microscope # 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS 5.1 NONE #### 6.0 PROCEDURE or ANALYSIS - 6.1 In measuring a fired bullet to determine the width of the land impression or the groove impression, it is paramount that the points used for beginning and ending a measurement comply with the discipline-wide practice. This practice utilizes the anchor points shown below. - 6.1.1 The fired bullet in question is mounted on one stage of the comparison microscope. The digital micrometer is mounted on the other stage. Both stages must be using the same magnification level (objective setting) and be in focus. - 6.1.2 Align the image of the measurement gap (opening) of the micrometer with the image of the appropriate land impression being measured and record the measurement to the nearest hundredth or thousandth of an inch or appropriate measurement. - 6.1.3 Repeat the above utilizing the groove impression. ## 2 INTERPRETATION OF RESULTS: 6.2.1 It may be necessary to measure several of each land and groove impression in order to record a reliable measurement. #### 7.0 APPROPRIATE APPENDICES Page **63** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III Approved by: Firearm & Toolmark Supervisor ## Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 7.1 Appendix 3 - Calibration Standards 7.2 Appendix 4 - Worksheets #### **8.0 REFERENCES** 8.1 U.S. Department of Justice, Federal Bureau of Investigation, NCIC, Criminalistics Laboratory Information System (CLIS) Operating Manual, 1978. 8.2 Walsh, J. F., "Accuracy, Speed and Conversion in Rifling Measurements," AFTE Journal, Vol. 9, No. 1, p. 50. 8.3 AFTE Newsletter, No. 4, December 1969, p. 28. Page **64** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III Approved by: Firearm & Toolmark Supervisor Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ## FA-IV-4 ## STEREOMICROSCOPE - GRID The State of Alaska Crime Lab does not employ a stereoscope equipped with a grid measuring system in the Firearm/Toolmark Section. Technical Leader: Robert J. Shem, Forensic Scientist III Approved by: Firearm & Toolmark Supervisor Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ## FA-IV-5 ## STEREOMICROSCOPE - MICROMETER The State of Alaska Crime Lab does not employ a micrometer-equipped stereomicroscope in the Firearm/Toolmark Section. Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ### FA-IV-6 ## STEREOMICROSCOPE - RULER #### 1.0 INTRODUCTION One of the class characteristics used in the discipline of firearm identification is the width of the land impressions and groove impressions. These measurements aid the examiner during the identification or elimination of a suspect firearm. If no firearm is submitted, these measurements will be used in determining the General Rifling Characteristics of the firearm involved. Several instruments can be used to obtain these
measurements. The stereomicroscope - ruler procedure utilizes a stereomicroscope and a hand held ruler. ## 1.1 OTHER RELATED PROCEDURES - 1.1.1 Trace Material Examination - 1.1.2 GRC Utilization - 1.1.3 Stereomicroscope Grid - 1.1.4 Stereomicroscope Micrometer - 1.1.5 Air Gap - 1.1.6 Measuring Projection Scope # 2.0 SAFETY CONSIDERATIONS - 2.1 This procedure may also involve hazardous materials to include evidence that may be contaminated with a biohazard. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. - 2.2 Proper caution to include strict adherence to Universal Precautions and the Blood Borne Pathogen Plan must be exercised. - 2.3 The use of personal protective equipment must be considered to avoid exposure to any potential hazards. Page **67** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III Approved by: Firearm & Toolmark Supervisor Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ### 3.0 PREPARATION **3.1 NONE** #### 4.0 INSTRUMENTATION 4.1 Stereomicroscope ## 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS **5.1 NONE** #### 6.0 PROCEDURE or ANALYSIS - 6.1 In measuring a fired bullet to determine the width of the land impression or the groove impression, it is paramount that the points used for beginning and ending a measurement comply with the discipline-wide practice. This practice utilizes the anchor points shown below. - 6.1.1 The fired bullet in question is either held or mounted on a steady surface beneath the stereomicroscope. - 6.1.2 The land impression at the base of the fired bullet is placed perpendicular to the scale of the ruler. - 6.1.3 Measure the distance between both anchor points of a land impression and record the measurement to the nearest hundredth or thousandth of an inch or appropriate measurement. - 6.1.4 Repeat the above utilizing the groove impression. ## **6.2 INTERPRETATION OF RESULTS:** 6.2. It may be necessary to measure several of each land and groove impression in order to record a reliable measurement. ## 7.0 APPROPRIATE APPENDICES - 7.1 Appendix 3 Calibration Standards - 7.2 Appendix 4 Worksheets Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ### **8.0 REFERENCES** 8.1 U.S. Department of Justice, Federal Bureau of Investigation, NCIC, Criminalistics Laboratory Information System (CLIS) Operating Manual, 1978. 8.2 Walsh, J. F., "Accuracy, Speed and Conversion in Rifling Measurements," AFTE Journal, Vol. 9, No. 1, p. 50. 8.3 AFTE Newsletter, No. 4, December 1969, p. 28. Technical Leader: Robert J. Shem, Forensic Scientist III Approved by: Firearm & Toolmark Supervisor Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ## FA-IV-7 ## **GRC UTILIZATION** #### 1.0 INTRODUCTION 1.1 The FBI's General Rifling Characteristics File can be utilized when attempting to determine a list of possible firearms that could have fired an evidence bullet when the correct firearm was not submitted. ## 1.2 OTHER RELATED PROCEDURES - 1.2.1 Trace Material Examination - 1.2.2 Stereomicroscope Ruler - 1.2.3 Stereomicroscope Grid - 1.2.4 Stereomicroscope Micrometer - 1.2.5 Air Gap - 1.2.6 Measuring Projection Scope ## 2.0 SAFETY CONSIDERATIONS - 2.1 This procedure may also involve hazardous materials to include evidence that may be contaminated with a biohazard. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. - 2.2 Proper caution to include strict adherence to Universal Precautions and the Blood Borne Pathogen Plan must be exercised. - 2.3 The use of personal protective equipment must be considered to avoid exposure to any potential hazards. ### 3.0 PREPARATION Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived **3.1 NONE** #### 4.0 INSTRUMENTATION **4.1 NONE** ## 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS 5.1 NONE #### 6.0 PROCEDURE or ANALYSIS - 6.1 The General Rifling Characteristics File can be accessed using the GRC System of the NCIC, the PC software version, or the current printout of the file. - 6.2 Follow the operating instructions listed specifically within each of the above systems utilizing the caliber and rifling characteristics of the evidence bullet. - 6.3 INTERPRETATION OF RESULTS - 6.3.1 The GRC File is an investigative aid and should not be construed as an all-inclusive list of firearms available with those particular rifling characteristics. ## 7.0 APPROPRIATE APPENDICES 7.1 Appendix 4 Worksheet ## 8.0 REFERENCES - 8.1 U.S. Department of Justice, Federal Bureau of Investigation, NCIC, Criminalistics Laboratory Information System (CLIS) Operating Manual, 1978. - 8.2 Walsh, J. F., "Accuracy, Speed and Conversion in Rifling Measurements," AFTE Journal, Vol. 9, No. 1, p. 50. - 8.3 AFTE Newsletter, No. 4, December 1969, p. 28. Page **71** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III Approved by: Firearm & Toolmark Supervisor Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### FA-IV-8 #### WADDING DETERMINATION #### 1.0 INTRODUCTION - 1.1 By examining wadding, the examiner may be able to determine the gauge size, manufacture, and if the wad contains markings suitable for comparison, the firearm that discharged it. - 1.2 OTHER RELATED PROCEDURES - 1.2.1 Trace Material Examination - 1.2.2 Stereomicroscope Ruler - 1.2.3 Stereomicroscope Grid - 1.2.4 Stereomicroscope Micrometer - 1.2.5 Air Gap - 1.2.6 Measuring Projection Scope ## 2.0 SAFETY CONSIDERATIONS - 2.1 This procedure may also involve hazardous materials to include evidence that may be contaminated with a biohazard. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. - 2.2 Proper caution to include strict adherence to Universal Precautions and the Blood Borne Pathogen Plan must be exercised. - 2.3 The use of personal protective equipment must be considered to avoid exposure to any potential hazards. ### 3.0 PREPARATION #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### **3.1 NONE** #### 4.0 INSTRUMENTATION - 4.1 Comparison Microscope - 4.2 Stereomicroscope - 4.3 Micrometer - 4.4 Caliper # 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS **5.1 NONE** #### 6.0 PROCEDURE or ANALYSIS - 6.1 Determine gauge size by; - 6.1.1 Directly comparing of evidence to known laboratory standards of similar manufacture or composition by comparing the base of evidence to the bases of the standards until a similar size is found. - 6.1.2 Measuring the base diameter of the wad and comparing these measurements to known measurements may also determine gauge size. - 6.2 Measurements may be obtained by utilizing: - 6.2.1 A caliper - 6.2.2 The air gap - 6.2.3 The stereomicroscope with micrometer/caliper - 6.2.4 The stereomicroscope with grid - 6.2.5 The stereomicroscope and ruler - 6.2.6 The measuring projector. - 6.3 Manufacturer's data can be determined by locating information stamped into the wad or by comparing the wad to known laboratory standards. Page **73** of **241** #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 6.4 Microscopic examination may reveal striations suitable for identification of the wad back to the shotgun that fired it. - 6.5 If evidence shotshells are submitted, it may be necessary to disassemble one or more for the determination of gauge size or manufacture. - 6.6 Record all information on the appropriate worksheet. #### **6.7 INTERPRETATION OF RESULTS:** 6.7.1 If the wad is mutilated or soaked with blood or other body fluids, the examiner may not be able to specifically determine gauge size. The examiner should also recognize that some manufacturers might duplicate the design of another manufacturer. #### 7.0 APPROPRIATE APPENDICES - 7.1 Appendix 3 Calibration Standards - 7.2 Appendix 4 Worksheets #### **8.0 REFERENCES** **8.1 NONE** Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### FA-IV-9 #### SHOT DETERMINATION #### 1.0 INTRODUCTION 1.1 By examining recovered shot pellets, the examiner may be able to determine the actual shot size. The determined size can then be compared to the shot size loaded in submitted live shotshells or to the size that the submitted discharged shotshell was marked to have contained. ### 1.2 OTHER RELATED PROCEDURES - 1.2.1 Trace Material Examination - 1.2.2 Stereomicroscope Ruler - 1.2.3 Stereomicroscope Grid - 1.2.4 Stereomicroscope Micrometer - 1.2.5 Air Gap - 1.2.6 Measuring Projection Scope ### 2.0 SAFETY CONSIDERATIONS - 2.1 This procedure may also involve hazardous materials to include evidence that may be contaminated with a biohazard. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. - 2 Proper caution to include strict adherence to Universal Precautions and the Blood Borne Pathogen Plan must be exercised. - 2.3 The use of personal protective equipment must
be considered to avoid exposure to any potential hazards. #### 3.0 PREPARATION #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### **3.1 NONE** #### 4.0 INSTRUMENTATION - 4.1 Comparison Microscope - 4.2 Stereomicroscope - 4.3 Micrometer - 4.4 Caliper # 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROL **5.1 NONE** #### 6.0 PROCEDURE or ANALYSIS - 6.1 The examiner may use one or all of the below techniques to determine shot size: - 6.1.1 Visual/Microscopic Comparison - 6.1.1.1 Determine the total number of pellets received. - 6.1.1.2 Determine the composition of the pellets. - 1.3 Determine the number of pellets suitable for comparison purposes. Make note if pellet sizes all appear to be similar in size. If several different sizes are present, determine each specific size. - 6,11.4 Compare laboratory standards of known shot sizes side by side with the evidence pellets until a known shot size is determined. A stereomicroscope may aid in this determination. This can be done one size at a time or several sizes at a time; however, if more than one size is used at a time, care should be taken not to mix up the shot. - 6.1.1.5 Record findings on worksheet. Page **76** of **241** 6.1.2 Comparison by Weight #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 6.1.2.1 Record the total number of pellets received. - 6.1.2.2 Determine the composition of the pellets. - 6.1.2.3 Determine the number of pellets suitable for weighing. Make note if pellet sizes all appear similar. If several sizes present, determine each specific size. - 6.1.2.4 Weigh the pellets in grams or grains. - 6.1.2.5 Divide weight of pellets by total number weighed - 6.1.2.6 Consult known pellet weights in Table 1 of Appendix G of the AFTE Glossary (3rd Edition) and determine shot size, which corresponds to evidence shot. - 6.1.2.7 Record findings on appropriate worksheet. The weight of the evidence pellets can also be directly compared to weight of standards using the same number of pellets until a similar known weight is obtained. - 6.1.3 Measuring Pellet Size - 6.1.3.1 Determine the total number of pellets received. - 6.1.3.2 Determine the composition of the pellets. - 6.1.3.3 Determine the number of pellets suitable for comparison purposes. Make note if pellet sizes all appear to be similar in size. If several different sizes are present, determine each specific size. - 61.3.4 Choose the best specimen and measure diameter using a caliper and record in hundredths or thousandths of an inch or the appropriate measurement. - 6.1.3.5 Consult known pellet sizes in Table 1 of Appendix G of the AFTE Glossary (3rd Edition) and determine shot size, which corresponds to evidence shot. #### 7.0 APPROPRIATE APPENDICES ## Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 7.1 Appendix 3 - Calibration Standards 7.2 Appendix 4 - Worksheets ### **8.0 REFERENCES** 8.1 Association of Firearm and Toolmark Examiners Glossary, 3rd Edition, 1994. Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### **FA-IV-10** #### PHYSICAL EXAMINATION & CLASSIFICATION OF FIRED BULLETS #### 1.0 INTRODUCTION 1.1 The initial examination of any fired bullet evidence will include the completion of a worksheet. These worksheets will include the physical description of the fired evidence and will serve as a source to document the condition of the evidence as received and any tests or comparisons performed. #### 1.2 OTHER RELATED PROCEDURES - 1.2.1 Trace Material Examination - 1.2.2 Stereomicroscope Ruler - 1.2.3 Stereomicroscope Grid - 1.2.4 Stereomicroscope Micrometer - 1.2.5 Air Gap - 1.2.6 Measuring Projection Scope - 1.2.7 Caliber Determination ### 2.0 SAFETY CONSIDERATIONS - 2.1 This procedure may also involve hazardous materials to include evidence that may be contaminated with a bio-hazard. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. - 2.2 Proper caution to include strict adherence to Universal Precautions and the Blood Borne Pathogen Plan must be exercised. #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 2.3 The use of personal protective equipment must be considered to avoid exposure to any potential hazards. #### 3.0 PREPARATION **3.1 NONE** #### 4.0 INSTRUMENTATION - 4.1 Comparison Microscope - 4.2 Stereomicroscope - 4.3 Micrometer - 4.4 Caliper - 4.5 Scale/Balance # 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS **5.1 NONE** ## 6.0 PROCEDURE or ANALYSIS - 6.1 A worksheet will be filled out according to the appropriate Appendices and individual laboratory policy. This may include noting the following: - 6.1.1 If any trace material present. - 6.1.2 The caliber. - 6.1.3 The bullet weight - 6.1.3.1 Recording weight of bullets in grains. - 6.1.3.2 Recording weight of slugs in ounces. - 6.1.4 The number of lands and grooves on fired bullet. - 6.1.5 The direction of twist. - 6.1.6 The measured width of the land impressions. Page **80** of **241** #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 6.1.7 The measured width of the groove impressions. - 6.1.8 The composition of bullet. - 6.1.9 The bullet style. - 6.1.10 The possible manufacturer/marketer of the bullet/projectile. - 6.1.11 A description of the base of the bullet. - 6.1.12 The type and position of cannelures. - 6.1.13 Any extraneous markings to include: - 6.1.13.1 Skid Marks - 6.1.13.2 Shave Marks - 6.1.13.3 Flared Base - 6.1.13.4 Other Marks - 6.1.14 The presence of gunpowder and/or powder imprints adhering to the base. - 6.1.15 The condition of the fired evidence as received. - 6.1.16 The suitability of the fired evidence for comparison purposes. - 6.2 Additional information about the bullet/projectile can be compiled. See the current worksheet entries for these optional data entries. ### 7.0 APPROPRIATE APPENDICES - 7.1 Appendix 3 Calibration Standards - 7.2 Appendix 4 Worksheets - 7.3 Appendix 12 Packaging of Firearm Evidence for Submittal to the Laboratory Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### **8.0 REFERENCES** 8.1 Howe, Walter, J., "Laboratory Worksheets" AFTE NEWSLETTER NUMBER TWO, August 1969, p.13. 8.2 Association of Firearm and Toolmark Examiners Glossary, 3rd Edition, 1994. Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### FA-IV-11 #### PHYSICAL EXAMINATION & CLASSIFICATION OF FIRED CARTRIDGE CASES #### 1.0 INTRODUCTION 1.1 The initial examination of any fired cartridge case evidence will include the completion of a worksheet. These worksheets will include the physical description of the fired cartridge case and will serve as a source to document the condition of the evidence as received and any tests or comparisons performed. #### 1.2 OTHER RELATED PROCEDURES - 1.2.1 Trace Material Examination - 1.2.2 Stereomicroscope Ruler - 1.2.3 Stereomicroscope Grid - 1.2.4 Stereomicroscope Micrometer - 1.2.5 Air Gap - 1.2.6 Measuring Projection Scope - 1.2.7 Caliber Determination ## 2.0 SAFETY CONSIDERATIONS - 2.1 This procedure may also involve hazardous materials to include evidence that may be contaminated with a biohazard. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. - 2.2 Proper caution to include strict adherence to Universal Precautions and the Blood Borne Pathogen Plan must be exercised. #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 2.3 The use of personal protective equipment must be considered to avoid exposure to any potential hazards. #### 3.0 PREPARATION **3.1 NONE** #### 4.0 INSTRUMENTATION - 4.1 Comparison Microscope - 4.2 Stereomicroscope - 4.3 Micrometer - 4.4 Caliper - 4.5 Measuring Projector - 4.6 Scale/Balance ## 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS **5.1 NONE** ### 6.0 PROCEDURE or ANALYSIS - 6.1 A worksheet will be filled out according to the appropriate Appendices and individual laboratory policy. This may include noting the following: - 6.1.1 If any trace material present. - 6.1.2 Caliber - 6.1.3 The possible manufacturer/marketer of the item. - 6.1.4 Ignition System - 6.1.4.1 Centerfire or - 6.1.4.2 Rimfire or - 6.1.4.3 Other Page **84** of **241** #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 6.1.5 Shape of cartridge. - 6.1.6 Description of cartridge and primer. - 6.1.7 Description of head stamp. - 6.1.8 Description of Firing Pin Impression. - 6.1.9 Description of other markings, to include: - 6.1.9.1 Breech Face Markings - 6.1.9.2 Extractor - 6.1.9.3 Ejector - 6.1.9.4 Resizing Marks - 6.1.9.5 Chamber Marks - 6.1.9.6 Anvil Marks - 6.1.9.7 Magazine Marks - 6.1.9.8 Ejection Port Markings - 6.1.9.9 Other Marks - 6.2 Additional information about the cartridge/cartridge case can be compiled. See the current worksheet entries for these optional data entries. ## 7.0 APPROPRIATE APPENDICES - 7.1 Appendix 3 Calibration Standards - 7.2 Appendix 4 Worksheets ### 8.0 REFERENCES - 8.1 Howe, Walter, J., "Laboratory Worksheets" AFTE NEWSLETTER NUMBER TWO, August 1969, p.13. - 8.2 Association of Firearm and Toolmark Examiners Glossary, 3rd Edition, 1994. Firearm and Toolmark Procedure
Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### FA-IV-12 #### PHYSICAL EXAMINATION & CLASSIFICATION OF FIRED SHOTSHELLS #### 1.0 INTRODUCTION 1.1 The initial examination of any fired shotshell evidence will include the completion of a worksheet. These worksheets will include the physical description of the fired shotshell and will serve as a source to document the condition of the evidence as received and any tests or comparisons performed. #### 1.2 OTHER RELATED PROCEDURES - 1.2.1 Trace Material Examination - 1.2.2 Stereomicroscope Ruler - 1.2.3 Stereomicroscope Grid - 1.2.4 Stereomicroscope Micrometer - 1.2.5 Air Gap - 1.2.6 Measuring Projection Scope - 1.2.7 Caliber Determination ### 2.0 SAFETY CONSIDERATIONS - 2.1 This procedure may also involve hazardous materials to include evidence that may be contaminated with a biohazard. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. - 2.2 Proper caution to include strict adherence to Universal Precautions and the Blood Borne Pathogen Plan must be exercised. #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 2.3 The use of personal protective equipment must be considered to avoid exposure to any potential hazards. #### 3.0 PREPARATION **3.1 NONE** #### 4.0 INSTRUMENTATION - 4.1 Comparison Microscope - 4.2 Stereomicroscope - 4.3 Micrometer - 4.4 Caliper - 4.5 Measuring Projector - 4.6 Scale/Balance ## 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS **5.1 NONE** ### 6.0 PROCEDURE or ANALYSIS - 6.1 A worksheet will be filled out according to the appropriate Appendices and individual laboratory policy. This may include noting the following: - 6.1.1 If any trace material present. - 5.1.2 The possible manufacturer/marketer of the item. - 6.1.3 Ignition System - 6.1.3.1 Centerfire or - 6.1.3.2 Rimfire or - 6.1.3.3 Other - 6.1.4 Shape of shotshell. Page **87** of **241** #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 6.1.5 Description of shotshell and primer. - 6.1.6 Description of head stamp. - 6.1.7 Description of Firing Pin Impression. - 6.1.8 Description of other markings, to include: - 6.1.8.1 Breech Face Markings - 6.1.8.2 Extractor - 6.1.8.3 Ejector - 6.1.8.4 Resizing Marks - 6.1.8.5 Chamber Marks - 6.1.8.6 Anvil Marks - 6.1.8.7 Magazine Marks - 6.1.8.8 Ejection Port Markings - 6.1.8.9 Other Marks - 6.2 Additional information about the shotshell can be compiled. See the current worksheet entries for these optional data entries. ## 7.0 APPROPRIATE APPENDICES - 7.1 Appendix 3 Calibration Standards - 7.2 Appendix 4 Worksheets # 8.0 REFERENCES - 8.1 Howe, Walter, J., "Laboratory Worksheets" AFTE NEWSLETTER NUMBER TWO, August 1969, p.13. - 8.2 Association of Firearm and Toolmark Examiners Glossary, 3rd Edition, 1994. Page **88** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III ALL PRINTED COPIES ARE UNCONTROLLED Approved by: Firearm & Toolmark Supervisor Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### FA-IV-13 #### MICROSCOPIC COMPARISON #### 1.0 INTRODUCTION 1.1 In order for an examiner to identify an item of fired evidence back to the firearm that produced it, a microscopic comparison utilizing a comparison microscope must be performed. The comparison microscope allows the examiner to place the evidence on one side of the microscope and the known standard on the other side. This procedure may also be used to compare two unknown pieces of fired evidence together to determine if they can be associated to the same firearm. ### 1.2 OTHER RELATED PROCEDURES - 1.2.1 Examination and Physical Classification of Fired Evidence - 1.2.2 Examination and Physical Classification of Fired Cartridge Cases - 1.2.3 Examination and Physical Classification of Fired Shotshells - 1.2.4 Trace Material Examination # 2.0 SAFETY CONSIDERATIONS - 2.1 This procedure may also involve hazardous materials to include evidence that may be contaminated with a biohazard. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. - 2.2 Proper caution to include strict adherence to Universal Precautions and the Blood Borne Pathogen Plan must be exercised. - 2.3 The use of personal protective equipment must be considered to avoid exposure to any potential hazards. Page **89** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III ALL PRINTED COPIES ARE UNCONTROLLED Approved by: Firearm & Toolmark Supervisor #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ### 3.0 PREPARATION **3.1 NONE** #### 4.0 INSTRUMENTATION - 4.1 Comparison Microscope - 4.2 Stereomicroscope ## 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS **5.1 NONE** #### 6.0 PROCEDURE or ANALYSIS - 6.1 The procedure steps below do not have to be performed in the order listed; however, all steps must be considered and/or addressed: - 6.1.1 Select the correct objective (magnification) setting and ensure that the objectives are locked in place. - 6.1.2 Select the correct set of oculars (eyepieces). - 6.1.3 The illumination (lights) used must be properly adjusted. Oblique lighting is usually preferred. - 6.1.4 Compare unknown fired evidence to either another piece of unknown fired evidence or a known standard by placing the unknown fired evidence on the left hand stage and the other piece of unknown fired evidence or known standard on the right hand stage. - 6.1.5 The entire unknown should be considered. - 1.6 If an identification is not initially made, the examiner should consider the following factors: - 6.1.6.1 Angle of lights - 6.1.6.2 Type of lights - 6.1.6.3 The need for additional known standards Page **90** of **241** #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 6.1.6.4 The position of the evidence, the tests or both - 6.1.6.5 The possibility of using magnesium smoke. - 6.1.6.6 The possibility of cleaning the firearm. - 6.1.6.7 The possibility that the firearm itself has changed #### **6.2 INTERPRETATION OF RESULTS:** - 6.2.1 A sufficient correspondence of individual characteristics will lead the examiner to the conclusion that both items (evidence and tests) originated from the same source. - 6.2.2 An insufficient correspondence of individual characteristics but a correspondence of class characteristics will lead the examiner to the conclusion that no identification or elimination could be made with respect to the items examined. - 6.2.3 A disagreement of class characteristics will lead the examiner to the conclusion that both items (evidence and tests) did not originate from the same source. - 6.2.4 A significant disagreement of individual characteristics will lead the examiner to the conclusion that both items (evidence and tests) did not originate from the same source. - 6.2.5 A lack of suitable microscopic characteristics will lead the examiner to the conclusion that the items are not suitable for comparison. - 5.2.6 All identifications must be documented by either: - 6.2.6.1 The identification indexed (for example, with a Sharpie marker) and notes referencing these indexing marks are taken, or - 6.2.6.2 Notes taken indicating what area(s) of the item displayed the identifying correspondence. #### 7.0 APPROPRIATE APPENDICES 7.1 Appendix 1 - Range of Conclusions Page **91** of **241** #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 7.2 Appendix 3 - Calibration Standards 7.3 Appendix 4 - Worksheets #### **8.0 REFERENCES** - 8.1 Howe, Walter, J., "Laboratory Worksheets" AFTE NEWSLETTER NUMBER TWO, August 1969, p.13. - 8.2 Association of Firearm and Toolmark Examiners Glossary, 3rd Edition, 1994. - 8.3 DeForest, Gaensslen, and Lee, Forensic Sciencel An Introduction to Criminalistics, McGraw- Hill, New York, 1983. Page **92** of **241** Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### FA-IV-14 #### TRACE MATERIAL EXAMINATION #### 1.0 INTRODUCTION 1.1 Fired Evidence recovered during an investigation may contain trace material transferred from the crime scene. This trace material may be in the form of blood, tissue, plaster, paint, hairs, fibers, glass, etc. The examiner needs to evaluate the importance of this evidence and, if further examination of the trace material is necessary, remove and preserve a sample of the trace material present. Removal of trace material may also be necessary to allow the proper examination of the fired evidence. ### 1.2 OTHER RELATED PROCEDURES - 1.2.1 Examination and Physical Classification of Fired Evidence - 1.2.2 Examination and Physical Classification of Fired Cartridge Cases - 1.2.3 Examination and Physical Classification of Fired Shotshells - 1.2.4 Microscopic Comparison ### 2.0 SAFETY CONSIDERATIONS - 2.1 This procedure may also involve hazardous materials to include evidence that may be contaminated with a biohazard. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. - 2.2 Proper caution to include strict adherence to Universal Precautions and the Blood Borne Pathogen Plan must be exercised. - 2.3 NFPA Listings
Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived | NF | NFPA LISTING | | | | | | | | |-----------------|------------------|------------------------|----------------------|---------|--|--|--|--| | CHEMICAL | HEALTH
HAZARD | FLAMMABILITY
HAZARD | REACTIVITY
HAZARD | CONTACT | | | | | | 15% Acetic Acid | 2 | 2 | 3 | | | | | | | 10% Bleach | 2 | 0 | 1 | | | | | | | Methanol | 1 | 3 | 0 | | | | | | | Acetone | 1 | 3 | 0 | | | | | | - 2.4 WARNING! Acetone is flammable and can pose a SEVERE FLAMMABILITY HAZARD - 2.5 WARNING! Methanol is flammable and can pose a SEVERE FLAMMABILITY HAZARD - 2.6 WARNING! Acetic acid is capable of detonation and can pose a SEVERE REACTIVITY HAZARD - 2.7 The use of personal protective equipment must be considered to avoid exposure to any potential hazards. #### 3.0 PREPARATION - 3.1 NOTE: ALWAYS ADD ACID TO WATER. NEVER ADD WATER TO ACID. - 3.1.1 15% Acetic Acid Solution: - 31.1.1 Prepare a 15% Acetic Acid Solution utilizing concentrated Glacial Acetic Acid and distilled water. - 3.1.2 10% Bleach Solution: - 3.1.2.1 Prepare a Bleach Solution utilizing Bleach and distilled water #### 4.0 INSTRUMENTATION - 4.1 Scale/Balance - 4.2 Stereomicroscope Page **94** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III ALL PRINTED COPIES ARE UNCONTROLLED Approved by: Firearm & Toolmark Supervisor Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS 5.1 NONE #### **6.0 PROCEDURE or ANALYSIS** - 6.1 Examine the fired evidence visually and microscopically for any trace material and record in notes. - 6.2 Determine if further examination of trace material is necessary - 6.2.1 If further examination of trace material IS necessary; - 6.2.1.1 If necessary, consult the appropriate section prior to the removal of any trace evidence. - 6.2.1.2 Remove material being careful not to damage the fired evidence. - 6.2.1.3 Place the removed trace material in a suitable container/packaging for submission to the appropriate section for further examination. - 6.2.2 If the trace material is not going to be retained for further examination, proceed with the following steps that are applicable. - 6.2.2.1 For evidence containing blood, tissue or other biohazards, soak the evidence for at least one (1) minute in a 10% bleach solution. - 6.2.2.2 Remove loose material by rinsing the fired evidence with methanol or water. - 6.2.2.3 Remove plaster by rinsing the fired evidence in a 15% acetic acid solution. - 6.2.2.4 Remove paint by soaking the fired evidence in alcohol or acetone. #### 7.0 APPROPRIATE APPENDICES #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 7.1 Appendix 3 Calibration Standards - 7.2 Appendix 4 Worksheets #### **8.0 REFERENCES** - 8.1 Howe, Walter, J., "Laboratory Worksheets" AFTE NEWSLETTER NUMBER TWO, August 1969, p.13. - 8.2 Association of Firearm and Toolmark Examiners Glossarv, 3rd Edition, 1994. - 8.3 DeForest, Gaensslen, and Lee, Forensic Sciencel An Introduction to Criminalistics, McGraw-Hill, New York, 1983. Page **96** of **241** Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### FA-IV-15 ### **OPEN CASE/UNSOLVED CASE FILE** Open case/unsolved case evidence retained for future comparisons, if present in the lab, would be maintained by the Firearm and Toolmark unit of the laboratory. Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### FA-IV-16 #### INTEGRATED BALLISTIC IDENTIFICATION SYSTEM NOTE: The NIBIN Section was officially suspended in February of 2009. The instrumentation and data linkage to ATF was removed early in 2010. Submission of fired evidence for inclusion in the NIBIN database is the responsibility of the agency possessing the evidence. Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### RD-I-1 #### **VISUAL EXAMINATION** #### 1.0 INTRODUCTION - 1.1 When a firearm is fired, gunshot residues in the following forms are discharged from the firearm: - 1.1.1 burnt gun powder particles - 1.1.2 partially burnt gun powder particles - 1.1.3 unburnt gun powder particle - 1.1.4 vaporous lead - 1.1.5 particulate metals - 1.2 These gunshot residues along with the morphology of the bullet hole can effectively be used in determining the possible muzzle to target distance. - 1.3 OTHER RELATED PROCEDURES - 1.3.1 Microscopic Examination ## 2.0 SAFETY CONSIDERATIONS - 2.1 This procedure may also involve hazardous materials to include evidence that may be contaminated with a biohazard. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. - 2.2 Proper caution to include strict adherence to Universal Precautions and the Blood Borne Pathogen Plan must be exercised. #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 2.3 The use of personal protective equipment must be considered to avoid exposure to any potential hazards. #### 3.0 PREPARATION **3.1 NONE** #### 4.0 INSTRUMENTATION **4.1 NONE** # 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS 5.1 NONE #### 6.0 PROCEDURE or ANALYSIS - 6.1 The visual examination of an item for gunshot residue will include the examination and/or consideration of the following: - 6.1.1 The presence of vaporous lead (smoke) - 6.1.2 The presence of particulate metals (shavings of lead, copper, brass) - 6.1.3 The presence of partially burnt and/or unburnt gunpowder - 6.1.4 The presence of melted adhering gunpowder - 6.1.5 A hole in the item - 6.1.6 The presence of a visible ring around the perimeter of holes - 6.1.7 The location of all holes, tears, missing buttons, etc. - 6.1.8 The presence of burning or singeing or melting - 6.1.9 The presence of any possible masking effects - 6.1.10 The direction of artifacts surrounding the hole - 6.2 Data regarding these physical effects and visible residues must be included in the examiner's notes. Page **100** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III ALL PRINTED COPIES ARE UNCONTROLLED Approved by: Firearm & Toolmark Supervisor #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### **6.3 INTERPRETATION OF RESULTS:** - 6.3.1 Indicative of/ Consistent with the Discharge of a Firearm. - 6.3.1.1 Vaporous Lead (smoke) - 6.3.1.2 Particulate Metals (shavings of lead, copper, brass) - 6.3.1.3 Unburned Gunpowder (morphology) - 6.3.1.4 Melted Adhering Gunpowder - 6.3.2 Indicative of/ Consistent with the Passage of a Bullet - 6.3.2.1 A hole in the item - 6.3.2.2 Visible ring around the perimeter of holes - 6.3.2.3 Location of all holes, tears, missing buttons, etc. - 6.3.3 Indicative of/ Consistent with a Contact Shot - 6.3.3.1 Ripping or Tearing - 6.3.3.2 Burning or Singeing - 6.3:3.3 Melted Artificial Fibers - 6.3.3.4 Heavy Vaporous Lead Residues - 6.3.3.5 Location of all holes, tears, missing buttons, etc. - 3.3.4 Possible Masking Effects - 6.3.4.1 Dark Background Color - 6.3.4.2 Blood Staining - 6.3.5 If the above observations support the findings of a "contact shot" no comparison is necessary. Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 6.3.6 If the observations do not support a "contact shot" finding, a working hypothesis will be formed based on the above observations. This hypothesis will be utilized in the comparison procedure. #### 7.0 APPROPRIATE APPENDICES 7.1.1 Appendix 4 - Worksheets #### 8.0 REFERENCES - 8.1 Anonymous, (1970). "Gunshot Residues and Shot Pattern Test", F.B.I. Law Enforcement Bulletin, Vol. 39, No. 9, p.7. - 8.2 Dillon, John, H., "A Protocol for Gunshot Residue Examinations in Muzzle-To-Target Distance Determinations", AFTE Journal, Vol. 22, No.3, p.32. Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### RD-I-2 #### MICROSCOPIC EXAMINATION #### 1.0 INTRODUCTION - 1.1 When a firearm is fired, gunshot residues, in the following forms are discharged from the firearm; - 1.1.1 burnt gun powder particles - 1.1.2 partially burnt gun powder particles - 1.1.3 unburnt gun powder particles - 1.1.4 vaporous lead - 1.1.5 particulate metals - 1.2 These gunshot residues along with the morphology of the bullet hole can effectively be used in determining the possible muzzle to target distance. - 1.3 OTHER RELATED PROCEDURES - 1.3.1 Visual Examination ## 2.0 SAFETY CONSIDERATIONS - 2.1 This procedure may also involve hazardous materials to include evidence that may be contaminated with a biohazard. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. - 2.2 Proper caution to include strict adherence to Universal Precautions and the Blood Borne Pathogen Plan must be exercised. - 2.3 The use of personal protective equipment must be considered to avoid exposure to any potential hazards. Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### 3.0 PREPARATION **3.1 NONE** #### 4.0 INSTRUMENTATION 4.1 Stereomicroscope ## 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS **5.1 NONE** #### 6.0 PROCEDURE or ANALYSIS - 6.1 The microscopic examination of an item for gunshot residue will include the examination
and/or consideration of the following: - 6.1.1 The presence of vaporous lead (smoke) - 6.1.2 The presence of particulate metals (shavings of lead, copper, brass) - 6.1.3 The presence of partially burnt and/or unburnt gunpowder - 6.1.4 The presence of melted adhering gunpowder - 6.1.5 A hole in the item - 6.1.6 The presence of a visible ring around the perimeter of holes - 6.1.7 The location of all holes, tears, missing buttons, etc. - .1.8 The presence of burning or singeing or melting - 6.1.9 The presence of any possible masking effects - 1.10 The direction of artifacts surrounding the hole - 6.2 Data regarding these physical effects and visible residues must be included in the examiner's notes. #### 6.3 INTERPRETATION OF RESULTS: 6.3.1 Indicative of/ Consistent with the Discharge of a Firearm. Page **104** of **241** #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 6.3.1.1 Vaporous Lead (smoke) - 6.3.1.2 Particulate Metals (shavings of lead, copper, brass) - 6.3.1.3 Unburned Gunpowder (morphology) - 6.3.1.4 Melted Adhering Gunpowder - 6.3.2 Indicative of/ Consistent with the Passage of a Bullet. - 6.3.2.1 A hole in the item - 6.3.2.2 Visible ring around the perimeter of holes - 6.3.2.3 Location of all holes, tears, missing buttons, etc. - 6.3.3 Indicative of/ Consistent with a Contact Shot - 6.3.3.1 Ripping or Tearing - 6.3.3.2 Burning or Singeing - 6.3.3.3 Melted Artificial Fibers - 6.3.3.4 Heavy Vaporous Lead Residues - 6.3:3.5 Location of all holes, tears, missing buttons, etc. - 6.3.4 Possible Masking Effects - 6.3.4.1 Dark Background Color - 6.3.4.2 Blood Staining - 6.3.5 If the above observations support the findings of a "contact shot" no comparison is necessary. - 6.3.6 If the observations do not support a "contact shot" finding, a working hypothesis will be formed based on the above observations. This hypothesis will be utilized in the comparison procedure. #### 7.0 APPROPRIATE APPENDICES Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 7.1.1 Appendix 3 - Calibration Standards and Instrumentation Maintenance 7.1.2 Appendix 4 - Worksheets #### **8.0 REFERENCES** - 8.1 Anonymous, (1970). "Gunshot Residues and Shot Pattern Test", F.B.I. Law Enforcement Bulletin, Vol. 39, No. 9, p.7. - 8.2 Dillon, John, H., "A Protocol for Gunshot Residue Examinations in Muzzle-To-Target Distance Determinations", AFTE Journal, Vol. 22, No.3, p.32. Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### RD-II-1 ## **MODIFIED GRIESS - DIRECT APPLICATION TECHNIQUE (DAT)** #### 1.0 INTRODUCTION - 1.1 The Modified Griess-Direct Application Technique (DAT) is used independently and/or in conjunction with other tests in range determinations. The Modified Griess-DAT test utilizes a color chemistry reaction to help distinguish obscure or faint gunpowder patterns. This test detects **nitrites**, a product of the incomplete burning of gunpowder, by reacting with acetic acid to form nitrous acid. This acid combines with alpha-naphthol and produces an orange-red color reaction. - 1.2 It should be noted that if multiple chemical examinations are going to be performed on an item they must follow a specific order: - 1.2.1 First- Modified Griess or Simplified Griess - 1.2.2 Second- Sodium Rhodizonate - 1.2.3 Third- Dithiooxamide ## 1.3 OTHER RELATED PROCEDURES - 1.3.1 Modified Griess- Reversed Application Technique - .3.2 Sodium Rhodizonate Procedure- Bashinski Transfer Technique - 1.3.3 Sodium Rhodizonate Procedure- Direct Application Technique - 1.3.4 Dithiooxamide ### 2.0 SAFETY CONSIDERATIONS 2.1 This procedure involves hazardous materials. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived health practices and determine the applicability of regulatory limitations prior to use. 2.2 Proper caution must be exercised and the use of personal protective equipment must be considered to avoid exposure to dangerous chemicals. Consult the appropriate Material Safety Data Sheet (MSDS) for each chemical prior to use. ## 2.3 NFPA Listings | | HEALTH
HAZARD | FLAMMABILITY
HAZARD | REACTIVITY
HAZARD | CONTACT
HAZARD | |---------------------|------------------|------------------------|----------------------|-------------------| | Sulfanic Acid | 3 | 3 | 1 | CORROSIVE | | Alpha Napthol | 3 | 1 | 1 | | | Dihydrochloride | 2 | 1 | 1 | OXY | | Methanol | 1 | 3 | 0 | | | Sodium Nitrate | 1 | 0 | 0 | | | Glacial Acetic Acid | 1 | 3 | 1 | | ## 2.4 Chemical Warnings - 2.4.1 WARNING! Sulfanilic Acid is toxic and can pose a SEVERE HEALTH HAZARD. - 2.4.2 WARNING! Sulfanilic Acid is flammable and can pose a SEVERE FLAMMABILITY HAZARD. - 2.4.3 WARNING! Sulfanilic Acid is a strong corrosive and can pose a SEVERE CONTACT HAZARD. - 2.4.4 WARNING! Alpha Naphthol is toxic and can pose a SEVERE HEALTH HAZARD. - 2.4.5 WARNING! Dihydrochloride is a strong oxidizer and can pose a SEVERE CONTACT HAZARD. - 2.4.6 WARNING! Methanol is flammable and can pose a SEVERE FLAMMABILITY HAZARD. Page **108** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III ALL PRINTED COPIES ARE UNCONTROLLED Approved by: Firearm & Toolmark Supervisor ### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived # 2.4.7 WARNING! Glacial Acetic Acid is flammable and can pose a SEVERE FLAMMABILITY HAZARD 2.5 The examiner must use eye protection, and work within a fume hood or utilize a spot vent. The examiner may wish to consider wearing a respirator and gloves. ### 3.0 PREPARATION - 3.1 NOTE: ALWAYS ADD ACID TO WATER. NEVER ADD WATER TO ACID. - 3.2 Sensitized Blank: - 3.2.1 Add 0.75 grams of Sulfanilic Acid to 150 milliliters of distilled water and mix. - 3.2.2 Add 0.42 grams of Alpha Naphthol to 150 milliliters of methanol and mix. - 3.2.3 Once both the solutions in step 1 & 2 are prepared mix them together in a clean photo tray. - 3.2.4 Saturate pieces of filter paper or desensitized photo paper in this solution. - 3.2.5 Once the sensitized blanks are dry, store in an airtight plastic container - 3.2.6 Utilizing these proportions, mix the quantity desired - 3.3 Acetic Acid Solution: - 3.1 Mix a 15% Glacial Acetic Acid solution. - 3.4 Nitrite Test Strips: - 3.4.1 Dissolve 0.6 grams of Sodium Nitrite in 100 milliliters of distilled water. - 3.4.2 Saturate pieces of filter paper or cotton swabs in this mixture. - 3.4.3 Store in an airtight plastic container. #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ### 3.5 NOTE: LABEL ALL CONTAINERS WITH: - 3.5.1 Name of solution - 3.5.2 Date of preparation - 3.5.3 Initials of Preparer - 3.5.4 Expiration date, if applicable #### 4.0 INSTRUMENTATION 4.1 Scale/Balance # 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS 5.1 The Minimum Analytical Standards & Controls for the Modified Griess-DAT procedure consists of placing a test mark, utilizing a Nitrite Test Strip, on one of the sensitized blanks being used. An immediate orange color should appear on the sensitized blank. This color shift indicates that the sensitized blank is sensitive to the presences of nitrites. # 6.0 PROCEDURE or ANALYSIS - 6.1 Place the sensitized blank (photo paper emulsion side down or sensitized filter paper) over the area to be fested. - 6.2 Soak a piece of nitrite tree cheesecloth or filter paper with the acetic acid solution, and place this over the reverse side of the evidence. - 6.3 Apply heat and pressure with an iron until the acetic acid solution treated paper is dry. ### 6.4 INTERPRETATION OF RESULTS: 6.4.1 Any orange, orange-red indications on the paper are the results of the chemically specific test for the presence of nitrite residues ### 7.0 APPROPRIATE APPENDICES 7.1.1 Appendix 2 - Critical Reagents Page **110** of **241** ### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 7.1.2 Appendix 3 - Calibration Standards and Instrumentation Maintenance 7.1.3 Appendix 4 - Worksheets ### 8.0 APPROVED SUPPLIERS 8.1 VWRSP.com ### 9.0 REFERENCES - 9.1 Dillon, John, "The Modified Griess Test: A Chemically Specific Chromophoric Test for Nitrate Compounds in Gunshot Residues", AFTE Journal, Vol. 22, No. 3, p.248. - 9.2 Anonymous, (1970). "Gunshot Residues and Shot Pattern Test", F.B.I. Law Enforcement Bulletin, Vol. 39, No. 9, p.7. - 9.3 Fiegel, F. and Anger, V., (1972). Spot Tests in Inorganic Analysis, 6th Ed., Elsevier Publishing Co., New York, New York. Technical Leader: Robert J. Shem, Forensic Scientist III Approved by: Firearm & Toolmark Supervisor Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### RD-II-2 # **MODIFIED GRIESS - REVERSE APPLICATION TECHNIQUE (RAT)** # 1.0 INTRODUCTION - 1 .1 The Modified Griess-Reverse Application Technique (RAT) is used independently and/or in conjunction with other tests in range determinations. The Modified Griess-RAT test utilizes a color chemistry reaction to help distinguish obscure or faint gunpowder patterns. This test detects **nitrites**, a product of the incomplete burning of gunpowder, by reacting with acetic acid to form nitrous acid. This acid combines with alpha-naphthol and produces an orange-red color reaction. - 1.2 It should be noted that if multiple chemical examinations are going to be performed on an item they must follow a specific order. - 1.2.1 First- Modified Griess or Simplified Griess - 1.2.2 Second- Sodium Rhodizonate - 1.2.3 Third- Dithiooxamide - 1.3 OTHER RELATED PROCEDURES - 1.3.1 Modified Griess-
Direct Application Technique - .3.2 Sodium Rhodizonate Procedure- Bashinski Transfer Technique - 1.3.3 Sodium Rhodizonate Procedure- Direct Application Technique - 1.3.4 Dithiooxamide # 2.0 SAFETY CONSIDERATIONS 2.1 This procedure involves hazardous materials. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and Technical Leader: Robert J. Shem, Forensic Scientist III Approved by: Firearm & Toolmark Supervisor ### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived health practices and determine the applicability of regulatory limitations prior to use. 2.2 Proper caution must be exercised and the use of personal protective equipment must be considered to avoid exposure to dangerous chemicals. Consult the appropriate Material Safety Data Sheet (MSDS) for each chemical prior to use. # 2.3 NFPA Listings | | HEALTH
HAZARD | FLAMMABILITY
HAZARD | REACTIVITY
HAZARD | CONTACT
HAZARD | |---------------------|------------------|------------------------|----------------------|-------------------| | Sulfanic Acid | 3 | 3 | 1 | CORROSIVE | | Alpha Napthol | 3 | 1 | 1 | | | Dihydrochloride | 2 | 1 | 1 | OXY | | Methanol | 1 | 3 | 0 | | | Sodium Nitrate | 1 | 0 | 0 | William F. T. S. | | Glacial Acetic Acid | 1 | 3 | 1 | | # 2.4 Chemical Warnings - 2.4.1 WARNING Sulfanilic Acid is toxic and can pose a SEVERE HEALTH HAZARD. - 2.4.2 WARNING! Sulfanilic Acid is flammable and can pose a SEVERE FLAMMABILITY HAZARD. - 2.4.3 WARNING! Sulfanilic Acid is a strong corrosive and can pose a SEVERE CONTACT HAZARD. - 2.4.4 WARNING! Alpha Naphthol is toxic and can pose a SEVERE HEALTH HAZARD. - 2.4.5 WARNING! Dihydrochloride is a strong oxidizer and can pose a SEVERE CONTACT HAZARD. Page **113** of **241** ### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 2.4.6 WARNING! Methanol is flammable and can pose a SEVERE FLAMMABILITY HAZARD. - 2.4.7 WARNING! Glacial Acetic Acid is flammable and can pose a SEVERE FLAMMABILITY HAZARD - 2.5 The examiner must use eye protection, and work within a fume hood or utilize a spot vent. The examiner may wish to consider wearing a respirator and gloves. ### 3.0 PREPARATION - 3.1 NOTE: ALWAYS ADD ACID TO WATER. NEVER ADD WATER TO ACID. - 3.2 Sensitized Blank: - 3.2.1 Add 0.75 grams of Sulfanilic Acid to 150 milliliters of distilled water and mix. - 3.2.2 Add 0.42 grams of Alpha Naphthol to 150 milliliters of methanol and mix. - 3.2.3 Once both the solutions in step 1 & 2 are prepared mix them together in a clean photo tray. - 3.2.4 Saturate pieces of filter paper or desensitized photo paper in this solution. - 3.2.5 Once the now sensitized blanks are dry, store in an airtight plastic container. - 3.2.6 Utilizing these proportions, mix the quantity desired - 3.3 Acetic Acid Solution: - 3.3.1 Mix a 15% Glacial Acetic Acid solution. - 3.4 Nitrite Test Strips: - 3.4.1 Dissolve 0.6 grams of Sodium Nitrite in 100 milliliters of distilled water. - 3.4.2 Saturate pieces of filter paper or cotton swabs in this mixture. Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 3.4.3 Store in an airtight plastic container. ### 3.5 NOTE: LABEL ALL CONTAINERS WITH: - 3.5.1 Name of solution - 3.5.2 Date of preparation - 3.5.3 Initials of Preparer - 3.5.4 Expiration date, if applicable ### 4.0 INSTRUMENTATION 4.1 Scale/Balance # 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS 5.1 The Minimum Analytical Standards & Controls for the Modified Griess-RAT procedure consists of placing a test mark, utilizing a Nitrite Test Strip, on one of the sensitized blanks being used. An immediate orange color should appear on the sensitized blank. This color shift indicates that the sensitized blank is sensitive to the presences of nitrites # 6.0 PROCEDURE or ANALYSIS - 6.1 Wipe the side of the sensitized blank that will be in contact with the questioned area with the acetic acid solution. - 6.2 Place the sensitized blank (photo paper emulsion side down or filter paper) over the area to be tested. - 6.3 Place a piece of filter paper or nitrite free cheese cloth over the either the sensitized blank or evidence depending on what is being used for a blank. - 6.4 Apply heat and pressure with an iron until the acetic acid solution treated paper is dry. #### 6.5 INTERPRETATION OF RESULTS: 6.5.1 Any orange, orange-red indications on the paper are the results of the chemically specific test for the presence of nitrite residues Page **115** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III Approved by: Firearm & Toolmark Supervisor ### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ### 7.0 APPROPRIATE APPENDICES - 7.1.1 Appendix 2 Critical Reagents - 7.1.2 Appendix 3 Calibration Standards and Instrumentation Maintenance - 7.1.3 Appendix 4 Worksheets ### **8.0 APPROVED SUPPLIERS** 8.1 VWRSP.com ### 9.0 REFERENCES - 9.1 Dillon, John, "The Modified Griess Test: A Chemically Specific Chromophoric Test for Nitrate Compounds in Gunshot Residues", AFTE Journal, Vol. 22, No. 3, p.248. - 9.2 Anonymous, (1970). "Gunshot Residues and Shot Pattern Test", F.B.I. Law Enforcement Bulletin, Vol. 39, No. 9, p.7 - 9.3 Fiegel, F. and Anger, V., (1972). Soot Tests in Inorganic Analysis, 6th Ed., Elsevier Publishing Co., New York, New York. Technical Leader: Robert J. Shem, Forensic Scientist III Approved by: Firearm & Toolmark Supervisor Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### RD-II-3 # SODIUM RHODIZONATE - BASHINSKI TRANSFER TECHNIQUE (BTT) ### 1.0 INTRODUCTION - 1.1 The Sodium Rhodizonate-Bashinski Transfer Technique (BTT) is used independently and/or in conjunction with other tests in range determinations. The Sodium Rhodizonate- (BTT) utilizes a color chemistry reaction that is specific for **lead** and can effectively be used in determining the physical characteristics of bullet holes including the determination of entrance vs. exit holes. Fired bullets passing through clothing and/or other objects often leave traces of lead around the bullet hole. This lead transfer comes from the surfaces of the bullet, the barrel and/or the primer residue. This lead transfer can be in the form of minute particles, a fine coating of powder particles or a fine cloud of vaporized lead. At times this lead transfer is an obvious ring or wipe around the hole but is more often invisible. - 1.2 It should be noted that if multiple chemical examinations are going to be performed on an item they must follow a specific order: - 1.2.1 First- Modified Griess or Simplified Griess - 1.2.2 Second-Sodium Rhodizonate - 1.2.3 Third-Dithiooxamide - 1.3 OTHER RELATED PROCEDURES - 1.3.1 Modified Griess Direct Application Technique - 3.2 Modified Griess Reverse Application Technique - 1.3.3 Sodium Rhodizonate Procedure- Direct Application Technique - 1.3.4 Dithiooxamide #### 2.0 SAFETY CONSIDERATIONS ### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 2.1 This procedure involves hazardous materials. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. - 2.2 Proper caution must be exercised and the use of personal protective equipment must be considered to avoid exposure to dangerous chemicals. Consult the appropriate Material Safety Data Sheet (MSDS) for each chemical prior to use. # 2.3 NFPA Listings 2.3 NFPA Listings | | HEALTH
HAZARD | FLAMMABILITY
HAZARD | REACTIVITY
HAZARD | CONTACT | |---------------------|------------------|------------------------|----------------------|---------| | Sodium Rhodizonate | 2 | 0 | 0 | | | Hydrochloric Acid | 3 | 0 | 0 | | | Sodium Bitartrate | 1 | 0 | 0 | | | Tartaric Acid | 0 | 1 | 0 | | | Glacial Acetic Acid | 2 | 2 | 3 | | # 2.4 Chemical Warnings - 2.4.1 WARNING! Hydrochloric Acid is toxic and can pose a SEVERE HEALTH HAZARD. - 2.4.2 WARNING! Glacial Acetic Acid is capable of detonation and can pose a SEVERE REACTIVITY HAZARD - 2.5 The examiner must use eye protection, and work within a fume hood or utilize a spot vent. The examiner may wish to consider wearing a respirator and gloves. ### 3.0 PREPARATION 3.1 NOTE: ALWAYS ADD ACID TO WATER, NEVER ADD WATER TO ACID. #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 3.2 Sodium Rhodizonate Solution: - 3.2.1 Prepare a saturated Sodium Rhodizonate solution. - 3.3 Hydrochloric Acid Solution: - 3.3.1 Prepare a 5% Hydrochloric Acid solution. - 3.4 Buffer Solution: - 3.4.1 Dissolve 1.9 grams of Sodium Bitartrate and 1.5 grams of Tartaric Acid in 100 milliliters of distilled water. - 3.4.2 This usually requires both heat and agitation to complete in a reasonable amount of time. - 3.5 Acetic Acid Solution - 3.5.1 Prepare a 15% Acetic Acid solution. - 3.6 NOTE: LABEL ALL CONTAINERS WITH - 3.6.1 Name of solution - 3.6.2 Date of preparation - 3.6.3 Initials of Preparer - 3.6.4 Expiration date, if applicable # 4.0 INSTRUMENTATION 4.1 Scale/Balance ### 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS 5.1 The Standards & Controls for the Sodium Rhodizonate test consists of first analyzing a control cloth swatch containing known gun smoke (soot) and partially burned gunpowder on one of the sensitized blanks being used. By performing the Sodium Rhodizonate procedure on this control sample the examiner can determine if in fact the Sodium Rhodizonate solution is reacting. Technical Leader: Robert
J. Shem, Forensic Scientist III Approved by: Firearm & Toolmark Supervisor ### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 5.2 An alternative set of Standards & Controls for the Sodium Rhodizonate test consists of utilizing cotton swabs dampened with a 5% Hydrochloric acid solution. One of the treated swabs is rubbed against a piece of known lead. This swab is then processed with the Sodium Rhodizonate test to insure that the test is reacting properly. Another treated swab is rubbed on the item to be tested. This must be well away from any holes examined. This swab is then processed with the Sodium Rhodizonate test to insure that the item being tested will not produce a false positive. ### 6.0 PROCEDURE or ANALYSIS - 6.1 Uniformly dampen a piece of filter paper with the Acetic Acid Solution. - 6.2 Place the treated filter paper over the hole/area to be tested. - 6.3 Place an additional paper over the first and apply moderate pressure or apply a hot iron for approximately 5 seconds. - 6.4 Remove these pieces of paper and spray the Sodium Rhodizonate Solution on to the tested area of the filter paper. - 6.5 Spray the tested area of the filter paper with the Buffer Solution (this step is optional). - 6.6 Spray the tested area of the filter paper with the Hydrochloric Acid Solution. - 6.7 Repeat this process on all holes/areas to be tested. Both sides of a hole should be tested if there is a question of entrance vs. exit. - **6.8 INTERPRETATION OF RESULTS:** - 6.8.1 A violet or purple colored ring, corresponding to the margin of the hole, or a violet or purple colored stain, corresponding to the area tested constitutes a positive reaction for lead. # 7.0 APPROPRIATE APPENDICES - 7.1.1 Appendix 2 Critical Reagents - 7.1.2 Appendix 3 Calibration Standards and Instrumentation Maintenance ### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 7.1.3 Appendix 4 - Worksheets ### **8.0 APPROVED SUPPLIERS:** 8.1 VWRSP.com ### 9.0 REFERENCES - 9.1 Dillon, John, "The Modified Griess Test: A Chemically Specific Chromophoric Test for Nitrate Compounds in Gunshot Residues", AFTE Journal, Vol. 22, No. 3, p.248. - 9.2 Anonymous, (1970). "Gunshot Residues and Shot Pattern Test", F.B.I. Law Enforcement Bulletin, Vol. 39, No. 9, p.7. - 9.3 Fiegel, F. and Anger, V., (1 972). Spot Tests in Inorganic Analysis, 6th Ed., Elsevier Publishing Co., New York, New York. Page **121** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III ALL PRINTED Approved by: Firearm & Toolmark Supervisor Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ### RD-II-4 ### **SODIUM RHODIZONATE - DIRECT APPLICATION TECHNIQUE (DAT)** ### 1.0 INTRODUCTION - 1.1 The Sodium Rhodizonate- Direct Application Technique (DAT) is used in independently and/or in conjunction with other tests in range determinations. The Sodium Rhodizonate- (DAT) utilizes a color chemistry reaction that is specific for **lead** and can effectively be used in determining the physical characteristics of bullet holes including the determination of entrance vs. exit holes. Fired bullets passing through clothing and/or other objects often leave traces of lead around the bullet hole. This lead transfer comes from the surfaces of the bullet, the barrel and/or the primer residue. This lead transfer can be in the form of minute particles, a fine coating of powder particles or a fine cloud of vaporized lead. At times this lead transfer is an obvious ring or wipe around the hole but is more often invisible. - 1.2 It should be noted that if multiple chemical examinations are going to be performed on an item they must follow a specific order. - 1.2.1 First- Modified Griess or Simplified Griess - 1.2.2 Second-Sodium Rhodizonate - 1.2.3 Third Dithiooxamide - 1.3 OTHER RELATED PROCEDURES - 1.3.1 Modified Griess Direct Application Technique - 13.2 Modified Griess Reverse Application Technique - 1.3.3 Sodium Rhodizonate Procedure- Bashinski Transfer Technique (BTT) - 1.3.4 Dithiooxamide ### 2.0 SAFETY CONSIDERATIONS ### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 2.1 This procedure involves hazardous materials. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. - 2.2 Proper caution must be exercised and the use of personal protective equipment must be considered to avoid exposure to dangerous chemicals. Consult the appropriate Material Safety Data Sheet (MSDS) for each chemical prior to use. - 2.3 NFPA Listings | 2 2 | NIEDA | Listinas | |-----|-------|----------| | 2.3 | INFFA | LISHIIGS | | | HEALTH
HAZARD | FLAMMABILITY
HAZARD | REACTIVITY
HAZARD | CONTACT | |---------------------|------------------|------------------------|----------------------|---------| | Sodium Rhodizonate | 2 | 0 | 0 | | | Hydrochloric Acid | 3 | 0 | 0 | | | Sodium Bitartrate | 1 | 0 | 0 | | | Tartaric Acid | 0 | 1 | 0 | | | Glacial Acetic Acid | 2 | 2 | 3 | | # 2.4 Chemical Warnings - 2.4.1 WARNING! Hydrochloric Acid is toxic and can pose a SEVERE HEALTH HAZARD. - 2.4.2 WARNING! Glacial Acetic Acid is capable of detonation and can pose a SEVERE REACTIVITY HAZARD - 2.5 The examiner must use eye protection, and work within a fume hood or utilize a spot vent. The examiner may wish to consider wearing a respirator and gloves. ## 3.0 PREPARATION 3.1 NOTE: ALWAYS ADD ACID TO WATER, NEVER ADD WATER TO ACID. #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 3.2 Sodium Rhodizonate Solution: - 3.2.1 Prepare a saturated Sodium Rhodizonate solution. - 3.3 Hydrochloric Acid Solution: - 3.3.1 Prepare a 5% Hydrochloric Acid solution. - 3.4 Buffer Solution: - 3.4.1 Dissolve 1.9 grams of Sodium Bitartrate and 1.5 grams of Tartaric Acid in 100 milliliters of distilled water. - 3.4.2 This usually requires both heat and agitation to complete in a reasonable amount of time. - 3.5 Acetic Acid Solution: - 3.5.1 Prepare a 15% Acetic Acid solution. - 3.6 NOTE: LABEL ALL CONTAINERS WITH - 3.6.1 Name of solution - 3.6.2 Date of preparation - 3.6.3 Initials of Preparer - 3.6.4 Expiration date, if applicable # 4.0 INSTRUMENTATION # 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS - 5.1 The Standards & Controls for the Sodium Rhodizonate test consists of first analyzing a control cloth swatch containing known gun smoke (soot) and partially burned gunpowder on one of the sensitized blanks being used. By performing the Sodium Rhodizonate procedure on this test mark the examiner can determine if in fact the Sodium Rhodizonate solution is reacting properly. - 5.2 An alternative set of Standards & Controls for the Sodium Rhodizonate test consists of utilizing cotton swabs dampened with a 5% Hydrochloric acid Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived solution. One of the treated swabs is rubbed against a piece of known lead. This swab is then processed with the Sodium Rhodizonate test to insure that the test is reacting properly. Another treated swab is rubbed on the item to be tested. This must be well away from any holes examined. This swab is then processed with the Sodium Rhodizonate test to insure that the item being tested will not produce a false positive. # 6.0 PROCEDURE or ANALYSIS - 6.1 Spray the Sodium Rhodizonate Solution on to the questioned area - 6.2 Spray the tested area with the Buffer Solution. - 6.3 Spray the tested area with the Hydrochloric Acid Solution - 6.4 Repeat this process on all holes/areas to be tested. Both sides of a hole should be tested if there is a question of entrance vs. exit. - 6.5 INTERPRETATION OF RESULTS: - 6.5.1 A violet or purple colored ring, corresponding to the margin of the hole, or a violet or purple colored stain, corresponding to the area tested constitutes a positive reaction for lead. # 7.0 APPROPRIATE APPENDICES - 7.1.1 Appendix 2 Critical Reagents - 7.1.2 Appendix 3 Calibration Standards and Instrumentation Maintenance - 7.1.3 Appendix 4 Worksheets # **8.0 APPROVED SUPPLIERS:** 8.1 VWRSP.com #### 9.0 REFERENCES Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 9.1 Dillon, John, "The Modified Griess Test: A Chemically Specific Chromophoric Test for Nitrate Compounds in Gunshot Residues", AFTE Journal, Vol. 22, No. 3, p.248. - 9.2 Anon., (1970). "Gunshot Residues and Shot Pattern Test", F.B.I. Law Enforcement Bulletin, Vol. 39, No. 9, p.7. - 9.3 Fiegel, F. and Anger, V., (1972). Spot Tests in Inorganic Analysis, 6th Ed., Elsevier Publishing Co., New York, New York. Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ### RD-II-5 # **DITHIOOXAMIDE (DTO)** ### 1.0 INTRODUCTION - 1.1 The Dithiooxamide (DTO) test is used independently and/or in conjunction with other tests in range determination. The DTO test utilizes a color chemistry reaction to indicate the presence of **copper**. The DTO test reacts with copper to produce a dark greenish-gray to nearly black color reaction. It should be noted that the DTO test will also react with cobalt, leaving an amber color reaction and nickel, leaving a violet color reaction. This test can effectively be used in determining the physical characteristics of bullet holes including the determination of entrance vs. exit holes. Fired bullets passing through clothing and/or other objects often leave traces of copper around the bullet hole. This copper transfer comes from the surfaces of a copper containing bullet and/or the
barrel of the firearm. This copper transfer can be in the form of minute particles, a fine coating of powder particles or a fine cloud of vaporized copper. At times this copper transfer is an obvious ring or wipe around the hole but is more often invisible. - 1.2 It should be noted that if multiple chemical examinations are going to be performed on an item they must follow a specific order: - 1.2.1 First-Modified Griess or Simplified Griess - 1.2.2 Second- Sodium Rhodizonate - 1.2.3 Third- Dithiooxamide # 1.3 OTHER RELATED PROCEDURES - 1.3.1 Modified Griess Direct Application Technique - 1.3.2 Modified Griess Reverse Application Technique - 1.3.3 Sodium Rhodizonate Procedure- Bashinski Transfer Technique (BTT) Technical Leader: Robert J. Shem, Forensic Scientist III Approved by: Firearm & Toolmark Supervisor ### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 1.3.4 Sodium Rhodizonate Procedure- Direct Application Technique (DAT) ### 2.0 SAFETY CONSIDERATIONS - 2.1 This procedure involves hazardous materials. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. - 2.2 Proper caution must be exercised and the use of personal protective equipment must be considered to avoid exposure to dangerous chemicals. Consult the appropriate Material Safety Data Sheet (MSDS) for each chemical prior to use. - 2.3 NFPA Listings | 2.3 | NFPA | Listings | |-----|--------|----------| | | 141111 | LIGHTIGE | | | NFPA LISTING | | | | | | | |---------------|------------------|------------------------|----------------------|---------|--|--|--| | CHEMICAL | HEALTH
HAZARD | FLAMMABILITY
HAZARD | REACTIVITY
HAZARD | CONTACT | | | | | Dithiooxamide | 2 | 1 | 1 | оху | | | | | Ammonia | 3 | 1 | 0 | | | | | | Ethanol | 0 | 3 | 0 | | | | | # 2.4 Chemical Warnings - 2 4.1 DANGER! Dithiooxamide is a strong oxidizing agent and can pose an EXTREME CONTACT HAZARD. - 2.4.2 WARNING! Ammonia is toxic and can pose a SEVERE HEALTH HAZARD. - 2.4.3 WARNING! Ethanol is flammable and can pose a SEVERE FLAMMABILITY HAZARD. Page **128** of **241** #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 2.5 The examiner must use eye protection, and work within a fume hood or utilize a spot vent. The examiner may wish to consider wearing a respirator and gloves. #### 3.0 PREPARATION - 3.1 NOTE: ALWAYS ADD ACID TO WATER. NEVER ADD WATER TO ACID. - 3.2 Dithiooxamide Solution: - 3.2.1 Prepare a 0.2% Dithiooxamide solution in ethanol. - 3.3 Ammonia Solution: - 3.3.1 Prepare a 2:5 ammonia solution in distilled water - 3.4 NOTE: LABEL ALL CONTAINERS WITH - 3.4.1 Name of solution - 3.4.2 Date of preparation - 3.4.3 Initials of Preparer - 3.4.4 Expiration date, if applicable # 4.0 INSTRUMENTATION 4.1 Scale/Balance # 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS - 5.1 The Standards & Controls for the DTO test consists of testing a piece of known copper. A piece of filter paper dampened with an aqueous solution of Ammonium Hydroxide (25%) is applied to a known source of copper. By performing the DTO procedure on this control sample the examiner can determine if in fact the DTO test is reacting. - 5.2 An alternative set of Standards & Controls for the DTO test consists of utilizing cotton swabs dampened with the ammonia solution. One of the treated swabs is rubbed against a piece of known copper. This swab is then processed with the DTO test to insure that the test is reacting properly. Page **129** of **241** ### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ### 6.0 PROCEDURE or ANALYSIS - 6.1 Place several drops of the ammonia solution on a piece of filter paper. - 6.2 Place the ammonia treated filter paper over the hole to be tested. - 6.3 Place a second piece of filter paper over the first and apply moderate pressure for approximately 5 seconds. - 6.4 Remove both pieces of filter paper and place several drops of the Dithiooxamide Solution to the tested area of the filter paper. - 6.5 Repeat this process on all holes to be tested. Both sides of a hole should be tested if there is a question of entrance vs. exit. - 6.6 INTERPRETATION OF RESULTS; - 6.6.1 A dark greenish-gray color reaction, corresponding to the area tested, constitutes a positive reaction for copper, and a blue color reaction, corresponding to the area tested, constitutes a positive reaction for nickel. ### 7.0 APPROPRIATE APPENDICES - 7.1.1 Appendix 2 Critical Reagents - 7.1.2 Appendix 3 Calibration Standards and Instrumentation Maintenance - 7.1.3 Appendix 4 Worksheets # 8.0 APPROVED SUPPLIERS 8 1 VWRSP com # 9.0 REFERENCES - 9.1 Lekstrom, J.A. and Koons, R.D., "Copper and Nickel Detection on Gunshot Targets by Dithiooxamide Test", Journal of Forensic Sciences, Vol. 31, No.4, p. 1283. - 9.2 Steinberg, M., Leist, Y., and Tassa, M., "A New Field Kit for Bullet Hole Identification", Journal of Forensic Sciences, Vol. 29, No. 1, p. 169. Page **130** of **241** Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 9.3 Fiegel, F. and Anger, V., (1972). Spot Tests in Inorganic Analysis, 6th Ed., Elsevier Publishing Co., New York, New York. Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### RD-II-6 ### SIMPLIFIED GRIESS AND SODIUM RHODIZONATE ### 1.0 INTRODUCTION - 1 .1 The Simplified Griess and Sodium Rhodizonate test is used independently and/or in conjunction with other tests in range determinations. The Simplified Griess and Sodium Rhodizonate test utilizes color chemistry reactions to help distinguish obscure or faint gunpowder and lead patterns. The Griess portion of the test detects **nitrites**, a product of the incomplete burning of gunpowder, by reacting with acetic acid to form nitrous acid. This acid combines with Marshall's Reagent and produces a brownish-red color reaction. The follow-up Sodium Rhodizonate portion of the test detects lead. The lead present combines with the reagent to produce a magenta color reaction. - 1.2 It should be noted that if multiple chemical examinations are going to be performed on an item they must follow a specific order. - 1.2.1 First- Modified Criess or Simplified Griess - 1.2.2 Second-Sodium Rhodizonate - 1.2.3 Third- Dithiooxamide # 1.3 OTHER RELATED PROCEDURES - .3.1 Modified Griess- Direct Application Technique - 1.3.2 Sodium Rhodizonate Procedure- Bashinski Transfer Technique - 1,3.3 Sodium Rhodizonate Procedure- Direct Application Technique - 1.3.4 Dithiooxamide ### 2.0 SAFETY CONSIDERATIONS 2.1 This procedure involves hazardous materials. This procedure does not purport to address all of the safety problems associated with its use. It is the ### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. 2.2 Proper caution must be exercised and the use of personal protective equipment must be considered to avoid exposure to dangerous chemicals. Consult the appropriate Material Safety Data Sheet (MSDS) for each chemical prior to use. # 2.3 NFPA Listings | | HEALTH
HAZARD | FLAMMABILITY
HAZARD | REACTIVITY
HAZARD | CONTACT
HAZARD | |---------------------|------------------|------------------------|----------------------|-------------------| | Sulfanic Acid | 3 | 3 | 1 | CORROSIVE | | Marshall's Reagent | 3 | 1 | 1 | | | Hydrochloric Acid | 3 | 0 | 1 | OXY | | Methanol | 1 | 3 | 0 | | | Sodium Nitrate | 1 | 0 | 0 | | | Glacial Acetic Acid | 1 | 3 | 1 | | # 2.4 Chemical Warnings - 2.4.1 WARNING! Sulfanilic Acid is toxic and can pose a SEVERE HEALTH HAZARD. - 2.4.2 WARNING! Sulfanilic Acid is flammable and can pose a SEVERE FLAMMABILITY HAZARD. - 2.4.3 WARNING! Sulfanilic Acid is a strong corrosive and can pose a SEVERE CONTACT HAZARD. - 2.4.4 WARNING! Marshall's Reagent is toxic and can pose a SEVERE HEALTH HAZARD. - 2.4.5 WARNING! Hydrochloric acid is a strong oxidizer and can pose a SEVERE CONTACT HAZARD. - 2.4.6 WARNING! Methanol is flammable and can pose a SEVERE FLAMMABILITY HAZARD. Page **133** of **241** #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived # 2.4.7 WARNING! Glacial Acetic Acid is flammable and can pose a SEVERE FLAMMABILITY HAZARD 2.5 The examiner must use eye protection, and work within a fume hood or utilize a spot vent. The examiner may wish to consider wearing a respirator and gloves. ### 3.0 PREPARATION - 3.1 NOTE: ALWAYS ADD ACID TO WATER. NEVER ADD WATER TO ACID. - 3.2 Sensitized Blank: - 3.2.1 Add 5.0 grams of Sulfanilic Acid to one liter of distilled water and mix. - 3.2.2 Add 5.0 grams of Marshall's Reagent to one liter of methanol and mix. - 3.2.3 Once both the solutions in step 1 & 2 are prepared mix them together in a clean photo tray with Glacial Acetic Acid in a ratio of 7:7:1 (Sulfanilic/Marshall's/Acetic). - 3.2.4 Saturate pieces of filter paper or desensitized photo paper in this solution in a suitable container, such as a photo tray. - 3.2.5 The blanks are ready to use after the excess liquid is allowed to drip back into the photo tray. - 3.3 Nitrite and Lead Test Fabric Swatches: - 3.3.1 Test fire a firearm into typical fabric material at a close range where visible gunpowder and sooty lead residues are noted. - 3.3.2 Cut small swatches of this fabric. Typically four small one inch by one inch swatches can be obtained by cutting the close range pattern into quadrants. - 3.3.3 Store in a
bulk container. - 3.4 Sodium Rhodizonate test solutions: #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 3.4.1 Prepare a fresh stock of solution by dissolving a small amount of Sodium Rhodizonate in approximately 50 milliliters of water. Add the Sodium Rhodizonate in tiny increments until the solution is saturated and will dissolve no more of the solid. - 3.4.2 Allow the solution to sit several minutes and decant the dark teacolored liquid into a clean container. - 3.4.3 The Sodium Rhodizonate solution must not be stored overnight as it loses efficacy. - 3.4.4 Prepare a 5 percent Hydrochloric Acid solution by pouring 50 milliliters of concentrated HCl into one liter of distilled water. # 3.5 NOTE: LABEL ALL CONTAINERS WITH: - 3.5.1 Name of solution - 3.5.2 Date of preparation - 3.5.3 Initials of Preparer - 3.5.4 Expiration date, if applicable (No date indicates indefinite expiration.) ### 4.0 INSTRUMENTATION 4.1 Scale/Balance # 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS 5.1 The Minimum Analytical Standards & Controls for the Simplified Griess and Sodium Rhodizonate procedure consists of processing a Nitrite and Lead Test Fabric Swatch. An immediate brownish-red color should appear on the sensitized blank for the Griess portion of the exam. This color shift indicates that the sensitized blank is sensitive to the presence of nitrites. A follow up spraying of the sensitized blank with the Sodium Rhodizonate solution and 5 percent Hydrochloric Acid solution should reveal a magenta color. This color shift indicates that the sensitized blank is sensitive to the presence of lead. #### 6.0 PROCEDURE or ANALYSIS ### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 6.1 Place the sensitized blank (photo paper emulsion side down or filter paper) over the area to be tested. - 6.2 Place the test area with the sensitized blank in a "sandwich" of clean, standard (NOT acid- free) parcel wrapping paper. Two layers or more on top and below the test materials is sufficient. - 6.3 Apply heat and pressure with an iron or photo mounting heat press until the acetic acid solution treated paper is dry. Optimum results with the heat press can be obtained by 225 degree heat and pressure for 30 seconds. - 6.4 It is recommended that photographs be taken of the controls, evidence test sheets, and known test sheets immediately after removing them from the heat press. - 6.5 If no reaction is noted on the test sheets allow them to sit overnight and reexamine. A second set of photos is recommended. - 6.6 Follow up by spraying the sheets with the Sodium Rhodizonate solution. Spray until the papers are covered with an even yellow color. - 6.7 It is recommended that photographs be taken of the sheets at this time. - 6.8 Next spray the sheets with the 5 percent HCl solution. Spray until the yellow background color disappears. - 6.9 It is recommended that photographs be taken of the sheets at this time. - 6.10 INTERPRETATION OF RESULTS: - 6.10.1 Any brownish-red indications on the paper are the results of the chemically specific test for the presence of nitrite residues - 6.10.2 Any magenta indications on the paper are the results of the chemically specific test for the presence of lead residues. ### 7.0 APPROPRIATE APPENDICES 7.1.1 Appendix 2 – Critical Reagents ### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 7.1.2 Appendix 3 - Calibration Standards and Instrumentation Maintenance 7.1.3 Appendix 4 - Worksheets # **8.0 APPROVED SUPPLIERS:** 8.1 VWRSP.com # 9.0 REFERENCES - 9.1 Dillon, John, "The Modified Griess Test: A Chemically Specific Chromophoric Test for Nitrate Compounds in Gunshot Residues", AFTE Journal, Vol. 22, No. 3, p.248. - 9.2 Shem, Robert J. "A Simplified Griess and Sodium Rhodizonate Test," AFTE Journal, Winter 2001, Vol. 33, No. 1, pp. 37-39. - 9.3 Anonymous, (1970). "Gunshot Residues and Shot Pattern Test", F.B.I. Law Enforcement Bulletin, Vol. 39, No. 9, p.7. - 9.4 Fiegel, F. and Anger, V. (1972). Soot Tests in Inorganic Analysis, 6th Ed., Elsevier Publishing Co., New York, New York. Page **137** of **241** Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### RD-III-1 ### NON-SHOT PELLET TEST PATTERN PRODUCTION ### 1.0 INTRODUCTION 1.1 In order to properly perform a muzzle-to-target range determination examination, it is usually necessary to attempt to reproduce the gunshot residue patterns present on the suspect item. This reproduction is accomplished by shooting tests at varying distances until the gunshot residue pattern present on the suspect item is reproduced. It is an essential prerequisite that the suspect firearm and ammunition consistent with the suspect ammunition be utilized. # 1.2 OTHER RELATED PROCEDURES - 1.2.1 Shotgun Test Pattern Production Procedure - 1.2.2 Safe Firearm Handling ### 2.0 SAFETY CONSIDERATIONS - 2.1 This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. - 2.2 Proper caution to include strict adherence to any and all Firing Range rules must be exercised and the use of personal protective equipment must be considered to avoid exposure to any potential hazards. - 2.3 Appropriate hearing and eye protection must be worn when applicable. # 3.0 PREPARATION - 3.1 Test Target Media - 3.1.1 Attach appropriate size pieces of cotton twill material, material similar to the evidence material, or a piece of the evidence material to a nitrite free cardboard backing board. Page **138** of **241** Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ### 4.0 INSTRUMENTATION **4.1 NONE** ### 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS **5.1 NONE** ### 6.0 PROCEDURE or ANALYSIS - 6.1 Tests generally should be shot one per piece of target media. - 6.2 Tests should be shot in increasing or decreasing range increments until a distance is established, both shorter and longer than, that reproduces the gunshot residue patterns on the suspect item. It is essential that the suspect firearm and appropriate ammunition be used for these tests. ### 6.3 INTERPRETATION OF RESULTS: 6.3.1 By utilizing the suspect firearm and appropriate ammunition it is possible to obtain a reproduction of a gunshot residue pattern present on a suspect item. Therefore one can ascertain the approximate bracketed distance that particular firearm's muzzle was from the suspect item when it was shot # 7.0 APPROPRIATE APPENDICES 7.1 Appendix 4 - Worksheets ### 8.0 REFERENCES 8.1 Anon., (1970). "Gunshot Residues and Shot Pattern Test", F.B.I. Law Enforcement Bulletin, Vol. 39, No. 9, p.7. 8.2 Dillon, John, H., "A Protocol for Gunshot Residue Examinations in Muzzle-To-Target Distance Determinations", AFTE Journal, Vo1.22, No.3, p.257. Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### RD-III-2 #### SHOT PELLET TEST PATTERN PRODUCTION ### 1.0 INTRODUCTION 1.1 In order to properly perform a muzzle-to-target range determination examination involving a shotgun, it is usually necessary to attempt to reproduce the shot patterns present on the suspect item. This reproduction is accomplished by shooting tests at varying distances until the shot pattern present on the suspect item is reproduced. It is an essential prerequisite that the suspect firearm and ammunition consistent with the suspect ammunition be utilized. # 1.2 OTHER RELATED PROCEDURES - 1.2.1 Non Shot Pellet Test Pattern Production Procedure - 1.2.2 Safe Firearm Handling # 2.0 SAFETY CONSIDERATIONS - 2.1 This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. - 2.2 Proper caution to include strict adherence to any and all Firing Range rules must be exercised and the use of personal protective equipment must be considered to avoid exposure to any potential hazards. - 2.3 Appropriate hearing and eye protection must be worn when applicable. # 3.0 PREPARATION - 3. Test Target Media - 3.1.1 The test media for shot pellet test patterns is an appropriate sized piece of poster board, heavy paper, etc. Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ### 4.0 INSTRUMENTATION **4.1 NONE** ### 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS **5.1 NONE** ### **6.0 PROCEDURE or ANALYSIS** - 6.1 Tests generally should be shot one per piece of target media. - 6.2 Tests should be shot in increasing or decreasing range increments until a distance is established, both shorter and longer than, that reproduces the shot patterns on the suspect item. It is essential that the suspect irearm and appropriate ammunition be used for these tests. # 6.3 INTERPRETATION OF RESULTS: 6.3.1 By utilizing the suspect firearm and appropriate ammunition it is possible to obtain a reproduction of a gunshot residue pattern present on a suspect item. Therefore one can ascertain the approximate bracketed distance that particular firearm's muzzle was from the suspect item when it was shot # 7.0 APPROPRIATE APPENDICES 7.1 Appendix 4 - Worksheets ### 8.0 REFERENCES - 8.1 Anon., (1970). "Gunshot Residues and Shot Pattern Test", F.B.I. Law Enforcement Bulletin, Vol. 39, No. 9, p.7. - 8.2 Dillon, John, H., "A Protocol for Gunshot Residue Examinations in Muzzle-To-Target Distance Determinations", AFTE Journal, Vo1.22, No.3, p.257. - 8.3 Dillon, John, H. "A Protocol for
Shot Pattern Examinations in Muzzle-to-Target Distance Determinations", AFTE Journal, Vol. 23, No. 1, p.49. Technical Leader: Robert J. Shem, Forensic Scientist III Approved by: Firearm & Toolmark Supervisor Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### TM-I-1 ### **EXAMINATION AND PHYSICAL CLASSIFICATION - TOOL** #### 1.0 INTRODUCTION 1.1 The initial examination of a tool will include the completion of a laboratory worksheet. This worksheet will include the physical description of the tool. It will also serve as a source to document the condition of the evidence as received and any tests or comparisons performed with the tool. ### 1.2 OTHER RELATED PROCEDURES - 1.2.1 Trace Material Examination - 1.2.2 Test Standards #### 2.0 SAFETY CONSIDERATIONS This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Proper caution to include strict adherence to Universal Precautions and the Blood Borne Pathogen Plan must be exercised and the use of personal protective equipment must be considered to avoid exposure to any potential hazards. ### 3.0 PREPARATION 3.1 NONE #### 4 0 INSTRUMENTATION 4.1 Stereomicroscope ### 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS **5.1 NONE** ### 6.0 PROCEDURE or ANALYSIS Page **142** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III ALL PRINTED COPIES ARE UNCONTROLLED Approved by: Firearm & Toolmark Supervisor ### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 6.1 A laboratory worksheet utilized for a tool examination should be filed out. This may include noting the following. - 6.1.1 If any trace material is present. - 6.1.2 The class characteristics of the tool - 6.1.3 The type of tool - 6.1.4 The brand name of tool - 6.1.5 The size of the tool - 6.1.6 The condition of the tool - 6.1.7 Type of tests conducted (if any) - 6.1.8 The medium used for testing # 7.0 APPROPRIATE APPENDICES 7.1 Appendix 4 - Worksheets #### 8.0 REFERENCES 8.1 DeForest, Gaensslen, and Lee, Forensic Science: An Introduction to Criminalistics, McGraw- Hill, New York, 1983 Page **143** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III Approved by: Firearm & Toolmark Supervisor Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### TM-I-2 #### TRACE MATERIAL EXAMINATION - TOOL ### 1.0 INTRODUCTION 1.1 Tools recovered during an investigation may contain trace material transferred from the crime scene. This trace material may be in the form of blood, tissue, plaster, paint, hairs, fibers, glass, etc. The examiner needs to evaluate the importance of this evidence and, if further examination of the trace material is necessary, remove and preserve a sample of the trace material present. Removal of trace material may also be necessary to allow the proper examination and testing of a tool ### 1.2 OTHER RELATED PROCEDURES 1.2.1 Examination and Physical Classification - Tool ### 2.0 SAFETY CONSIDERATIONS 2.1 This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Proper caution to include strict adherence to Universal Precautions and the Blood Borne Pathogen Plan must be exercised and the use of personal protective equipment must be considered to avoid exposure to any potential hazards. # 2.2 NFPA Codes | CHEMICAL | HEALTH
HAZARD | FLAMMABILITY
HAZARD | REACTIVITY
HAZARD | CONTACT | |-----------------|------------------|------------------------|----------------------|---------| | 15% Acetic Acid | 2 | 2 | 3 | | | 10% Bleach | 2 | 0 | 1 | | | Methanol | 1 | 3 | 0 | | | Acetone | 1 | 3 | 0 | | Page **144** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III Approved by: Firearm & Toolmark Supervisor ### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ### 2.3 Chemical Warnings - 2.3.1 WARNING! Acetic acid is capable of detonation and can pose a SEVERE REACTIVITY HAZARD. - 2.3.2 WARNING! Methanol is flammable and can pose a SEVERE FLAMMABILITY HAZARD. - 2.3.3 WARNING! Acetone is flammable and can pose a SE FLAMMABILITY HAZARD - 2.4 The examiner must use eye protection, and work within a tume hood or utilize a spot vent. The examiner may wish to consider wearing a respirator and gloves. #### 3.0 PREPARATION - 3.1 NOTE: ALWAYS ADD ACID TO WATER. NEVER ADD WATER TO ACID. - 3.2 15% Acetic Acid Solution: - 3.2.1 Prepare a 15% Acetic Acid Solution utilizing Concentrated Glacial Acetic Acid and distilled water. - 3.3 10% Bleach Solution - 3.3.1 Prepare a 10% Bleach Solution utilizing Bleach and distilled Water ### 4.0 INSTRUMENTATION ### 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS 5.1 NONE ### 6.0 PROCEDURE or ANALYSIS - Examine the tool visually and microscopically for any trace material and record in notes. - 6.2 Determine if further examination of trace material is necessary. - 6.3 If further examination of trace material IS necessary; #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 6.3.1 If necessary, consult the appropriate section prior to the removal of any trace evidence. - 6.3.2 Remove material being careful not to damage the tool. - 6.3.3 Place the removed trace material in a suitable container/packaging for submission to the appropriate section for further examination. - 6.4 If the trace material is not going to be retained for further examination proceed with the following steps that are applicable. - 6.4.1 For evidence containing blood, tissue or other biohazards, soak the evidence for at least one (1) minute in a 10% bleach solution. - 6.4.2 Remove loose material by rinsing the tool with methanol or water. - 6.4.3 Remove plaster by soaking the tool in a 15% acetic acid solution. - 6.4.4 Remove paint by soaking the tool in alcohol or acetone. #### 7.0 APPROPRIATE APPENDICES - 7.1 Appendix 3 Calibration Standards - 7.2 Appendix 4 Worksheets ### **8.0 REFERENCES** 8.1 DeForest, Gaensslen, and Lee, Forensic Science: An Introduction to Criminalistics, McGraw- Hill, New York, 1983 Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### **TM-I-3** #### **TEST STANDARDS** #### 1.0 INTRODUCTION 1 .1 In order to compare a questioned toolmark with a suspect tool, test standards or marks are usually made with the suspect tool. The basic objective in preparing test standards is to attempt to duplicate the manner in which the tool was used to produce the evidence or questioned toolmark. #### 1.2 OTHER RELATED PROCEDURES - 1.2.1 Examination and Physical Classification Too - 1.2.2 Trace Material Examination-Tool - 1.2.3 Physical Examination & Classification-Toolmark - 1.2.4 Trace Material Examination-Toolmark - 1.2.5 Evidence Evaluation ### 2.0 SAFETY CONSIDERATIONS - 2.1 This procedure may involve hazardous materials, operations and/or equipment. Some component parts of a cylinder and/or lock are under spring tension and may present a missile hazard. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Proper caution must be exercised and the use of personal protective equipment must be considered to avoid exposure to any potential hazards. - 2.2 The examiner should consider using eye protection. #### 3.0 PREPARATION 3.1 Test Media: ### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 3.1.1 The initial test media must be soft enough to prevent alterations of the tool's working surface. - 3.1.2 Lead is usually the material utilized. - 3.1.3 Subsequent tests might require the use of a harder test media to better reproduce the toolmarks. #### 4.0 INSTRUMENTATION 4.1 NONE # 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS **5.1 NONE** #### 6.0 PROCEDURE or ANALYSIS - 6.1 A systematic approach should be used for the production of test marks or standards. Consideration should be given to - 6.1.1 Areas of recent use on the tool in question. - 6.1.2 Direction of use. - 6.1.3 Indexing of test standards/marks. - **6.2 INTERPRETATION OF RESULTS:** - 6.2.1 See Microscopic Comparison Procedure ### 7.0 APPROPRIATE APPENDICES 7.1 Appendix 4 - Worksheets #### 8.0 REFERENCES 8. DeForest, Gaensslen, and Lee, Forensic Science: An Introduction to Criminalistics, McGraw- Hill, New York, 1983 Technical Leader: Robert J. Shem, Forensic Scientist III Approved by: Firearm & Toolmark Supervisor Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### TM-II-1 #### **EXAMINATION AND PHYSICAL CLASSIFICATION – TOOLMARK** #### 1.0 INTRODUCTION 1.1 In order to compare a questioned toolmark with a suspect tool, it is necessary to evaluate the toolmark. This evaluation will consist of a physical evaluation and classification of the toolmark. This evaluation will help determine what course the rest of the examination should take. The basic objective in evaluating a questioned toolmark is to determine the suitability and classification of the toolmark. ### 1.2 OTHER RELATED PROCEDURES - 1.2.1 Examination and Physical Classification Tool - 1.2.2 Trace Material Examination-Too - 1.2.3 Test Standard - 1.2.4 Trace Material Examination-Toolmark ### 2.0 SAFETY
CONSIDERATIONS 2.1 This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Proper caution to include strict adherence to Universal Precautions and the Blood Borne Pathogen Plan must be exercised and the use of personal protective equipment must be considered to avoid exposure to any potential hazards. ## 3.0 PREPARATION 3.1 NONE #### 4.0 INSTRUMENTATION Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ### 4.1 Stereomicroscope #### 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS **5.1 NONE** #### 6.0 PROCEDURE or ANALYSIS - 6.1 A systematic approach should be used for the physical examination and classification of questioned toolmarks. Consideration should be given to: - 6.1.1 The suitability of the toolmark for comparison purposes. - 6.1.2 Class of tool that made the toolmark - 6.1.3 Major and minor classes of toolmarks - 6.1.4 Physical characteristics of toolmarks - 6.1.5 Direction of toolmark. ### 6.2 INTERPRETATION OF RESULTS: - 6.2.1 If the toolmark is suitable for comparison the examination may continue. - 6.2.2 If the toolmark has the same class characteristics as the suspect tool the examination may continue ### 7.0 APPROPRIATE APPENDICES - 7.1 Appendix 3 Calibration Standards - 7.2 Appendix 4 Worksheets ### 8.0 REFERENCES 8.1 DeForest, Gaensslen, and Lee, Forensic Science: An Introduction to Criminalistics, McGraw- Hill, New York, 1983 Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### TM-II-2 #### TRACE MATERIAL EXAMINATION - TOOLMARK #### 1.0 INTRODUCTION 1.1 Toolmarks recovered during an investigation may contain trace material transferred from the crime scene. This trace material may be in the form of blood, tissue, plaster, paint, hairs, fibers, glass, etc. The examiner needs to evaluate the importance of this evidence and, if further examination of the trace material is necessary, remove and preserve a sample of the trace material present. Removal of trace material may also be necessary to allow the proper examination and testing of a toolmark. #### 1.2 OTHER RELATED PROCEDURES - 1.2.1 Examination and Physical Classification Toolmark - 1.2.2 Microscopic Comparison ## 2.0 SAFETY CONSIDERATIONS - 2.1 This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Proper caution to include strict adherence to Universal Precautions and the Blood Borne Pathogen Plan must be exercised and the use of personal protective equipment must be considered to avoid exposure to any potential hazards. - 2.2 NFPA Codes #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived | CHEMICAL | HEALTH
HAZARD | FLAMMABILITY
HAZARD | REACTIVITY
HAZARD | CONTACT | |-----------------|------------------|------------------------|----------------------|---------| | 15% Acetic Acid | 2 | 2 | 3 | | | 10% Bleach | 2 | 0 | 1 | | | Methanol | 1 | 3 | 0 | | | Acetone | 1 | 3 | 0 | | ### 2.3 Chemical Warnings - 2.3.1 WARNING! Acetic acid is capable of detonation and can pose a SEVERE REACTIVITY HAZARD. - 2.3.2 WARNING! Methanol is flammable and can pose a SEVERE FLAMMABILITY HAZARD. - 2.3.3 WARNING! Acetone is flammable and can pose a SEVERE FLAMMABILITY HAZARD - 2.4 The examiner must use eye protection, and work within a fume hood or utilize a spot vent. The examiner may wish to consider wearing a respirator and gloves. #### 3.0 PREPARATION - 3.1 NOTE; ALWAYS ADD ACID TO WATER. NEVER ADD WATER TO ACID. - 3.2 15% Acetic Acid Solution: - 3.2.1 Prepare a 15% Acetic Acid Solution utilizing Concentrated Glacial Acetic Acid and distilled water. - 3.3 10% Bleach Solution: - 3.3.1 Prepare a 10% Bleach Solution utilizing Bleach and distilled Water #### 4.0 INSTRUMENTATION 4.1 Scale/Balance Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS #### 5.1 NONE #### **6.0 PROCEDURE or ANALYSIS** - 6.1 Examine the tool visually and microscopically for any trace material and record in notes. - 6.2 Determine if further examination of trace material is necessary. - 6.3 If further examination of trace material IS necessary; - 6.3.1 If necessary, consult the appropriate section prior to the removal of any trace evidence. - 6.3.2 Remove material being careful not to damage the tool. - 6.3.3 Place the removed trace material in a suitable container/packaging for submission to the appropriate section for further examination. - 6.4 If the trace material is not going to be retained for further examination, proceed with the following steps that are applicable. - 6.4.1 For evidence containing blood, tissue or other biohazards, soak the evidence for at least one (1) minute in a 10% bleach solution. - 6.4.2 Remove loose material by rinsing the tool with methanol or water. - 6.4.3 Remove plaster by soaking the tool in a 15% acetic acid solution. - 6.4.4 Remove paint by soaking the tool in alcohol or acetone. ### 7.0 APPROPRIATE APPENDICES - 7.1 Appendix 3 Calibration Standards - 7.2 Appendix 4 Worksheets #### 8.0 REFERENCES Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 8.1 DeForest, Gaensslen, and Lee, Forensic Science: An Introduction to Criminalistics, McGraw- Hill, New York, 1983 Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### TM-II-3 #### MICROSCOPIC COMPARISON ### 1.0 INTRODUCTION 1.1 In order for an examiner to identify a toolmark back to the tool that produced it, a microscopic comparison utilizing a comparison microscope must be performed. The comparison microscope allows the examiner to place the evidence on one side of the microscope and the known standard on the other side. This procedure may also be used to compare two unknown toolmarks together to determine if they were made by a single tool. ### 1.2 OTHER RELATED PROCEDURES - 1.2.1 Examination and Physical Classification - 1.2.2 Trace Material Examination - 1.2.3 Test Standard ### 2.0 SAFETY CONSIDERATIONS - 2.1 This procedure may involve hazardous materials, operations and/or equipment. Some component parts of a cylinder and/or lock are under spring tension and may present a missile hazard. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Proper caution must be exercised and the use of personal protective equipment must be considered to avoid exposure to any potential hazards. - 2.2 The examiner should consider using eye protection. #### 3.0 PREPARATION 3.1 NONE #### 4.0 INSTRUMENTATION Technical Leader: Robert J. Shem, Forensic Scientist III ALL PRINT Approved by: Firearm & Toolmark Supervisor ### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 4.1 Comparison Microscope - 4.2 Stereomicroscope #### 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS **5.1 NONE** ### 6.0 PROCEDURE or ANALYSIS - 6.1 The procedure steps below do not have to be performed in the order listed; however, all steps should be considered and/or addressed: - 6.1.1 Select the correct objective (magnification) setting and ensure that the objectives are locked in place. Select the correct set of oculars (eyepieces). - 6.1.2 The illumination (lights) used must be properly adjusted. Oblique lighting is usually preferred. - 6.1.3 Compare the unknown toolmark to either another unknown toolmark or a known standard by placing the unknown toolmark on the left hand stage and the other unknown toolmark or known standard on the right hand stage. - 6.1.4 The entire toolmark must be considered. - 6.1.5 If an identification is not initially made, the examiner should consider the following factors: - 6.1.5.1 Angle of lights - 6.1.5.2 Type of lights - 6.1.5.3 The need for additional known standards - 6.1.5.4 The position of the evidence, the tests or both. - 6.1.5.5 The possibility of using magnesium smoke. - 6.1.5.6 The possibility of cleaning the tool. Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 6.1.5.7 The possibility that the tool itself has changed #### **6.2 INTERPRETATION OF RESULTS:** - 6.2.1 A sufficient correspondence of individual characteristics will lead the examiner to the conclusion that both items (evidence and tests) originated from the same source. - 6.2.1.1 This is defined as an **Identification** by the AFTE Glossary. - 6.2.2 An insufficient correspondence of individual characteristics but a correspondence of class characteristics will lead the examiner to the conclusion that no identification or elimination was made with respect to the items examined. - 6.2.2.1 This is defined as an **Inconclusive** by the AFTE Glossary. An inconclusive can be further defined as: - 6.2.2.1.1 **Inconclusive A**: Some agreement of individual characteristics and all discernible class characteristics, but insufficient for an identification. - 6.2.2.1.2 **Inconclusive B**: Agreement of all discernible class characteristics without agreement or disagreement of individual characteristics due to an absence, insufficiency, or lack of reproducibility. - 6.2.2.1.3 **Inconclusive C**: Agreement of all discernable class characteristics and disagreement
of individual characteristics, but insufficient for an elimination. - 6.2.3 A disagreement of class characteristics will lead the examiner to the conclusion that both items (evidence and tests) did not originate from the same source. - 6.2.3.1 This is defined as an **Elimination** by the AFTE Glossary. - 6.2.4 A lack of suitable microscopic characteristics will lead the examiner to the conclusion that the items are not suitable for comparison. #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ### 6.2.5 All identifications must be documented by either: - 6.2.5.1 Verification by a second examiner. - 6.2.5.2 Photomicrograph - 6.2.5.3 The identification indexed and sufficient notes referencing these indexing marks are taken. ### 7.0 APPROPRIATE APPENDICES - 7.1 Appendix 1 Range of Conclusions - 7.2 Appendix 3 Calibration Standards - 7.3 Appendix 4 Worksheets - 7.4 Appendix 7 Verifications ### **8.0 REFERENCES** - 8.1 DeForest, Gaensslen, and Lee, Forensic Science: An Introduction to Criminalistics, McGraw-Hill, New York, 1983 - 8.2 AFTE GLOSSARY 5th Edition Section 1- Firearms Identification Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### TM-III-1 #### **MAGNESIUM SMOKING** #### 1.0 INTRODUCTION - 1.1 Magnesium smoking is a technique of reducing the glare of a shiny object by lightly coating the surface with fine magnesium smoke. - 1.2 This smoking is traditionally done manually, however a diode sputtering system used for coating Scanning Electron Microscopy (SEM) specimens might also be used. #### 2.0 SAFETY CONSIDERATIONS 2.1 This procedure involves hazardous materials, operations and equipment. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Proper caution must be exercised and the use of personal protective equipment must be considered to avoid exposure to hazardous conditions. Consult the appropriate MSDS for each product prior to use. #### 2.2 NFPA | CHEMICAL | HEALTH
HAZARD | FLAMMABILITY
HAZARD | REACTIVITY
HAZARD | CONTACT | |------------------|------------------|------------------------|----------------------|---------| | Magnesium Ribbon | 1 | 4 | 3 | | - 2.3 DANGER! Magnesium Ribbon is highly flammable and can pose an EXTREME FLAMMABILITY HAZARD. - 2.4 WARNING! Magnesium Ribbon is capable of detonation and can pose a SEVERE REACTIVITY HAZARD. Technical Leader: Robert J. Shem, Forensic Scientist III Approved by: Firearm & Toolmark Supervisor #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 2.5 The examiner must consider the use eye protection, and work within a fume hood or utilize a spot vent. The examiner may wish to consider wearing a respirator, gloves, and an apron #### 3.0 PREPARATION - 3.1 Cut short strips of magnesium ribbon off the roll. - 3.2 Both the roll and the strips should be stored properly based on the NFPA code #### 4.0 INSTRUMENTATION 4.1 Diode Sputtering System (if used) ### 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS **5.1 NONE** #### 6.0 PROCEDURE or ANALYSIS - 6.1 MANUAL SMOKING: - 6.1.1 The short pieces of magnesium ribbon are lit. - 6.1.2 The object to be smoked is passed over the smoke generated by the burning magnesium. - 6.1.3 If the object collects too much smoke, wipe the smoke off and repeat the process. - 6.1.4 The coating should be light enough to see the color of the item smoked through the coating of smoke. ## 6.2 AUTOMATED SMOKING: - 6.2.1 The appropriate instructions for the particular instrument should be followed. - 6.2.2 These techniques simply reduce the glare of an object under examination and are non-destructive, non-invasive techniques. Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ### 7.0 APPROPRIATE APPENDICES 7.1 Appendix 4 - Worksheets ### **8.0 REFERENCES** 8.1 Janelli, R., and Geyer, G., "Smoking a Bullet", AFTE Journal, Vol. 9, No. 2, p. 128 Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### TM-III-2 #### CASTING #### 1.0 INTRODUCTION 1.1 If an item received for a toolmark examination is too large to be conveniently placed on the microscope's stages a silicon rubber cast can be made of the toolmarks in question. There are also occasions when a cast of a toolmark might be received as evidence. In either case, any test standards made will also have to be cast in order to perform a comparison. Mikrosil ™, Duplicast™, or other types of silicon rubber casting material (which are similar and procedurally are equivalent) may be used as long as the manufacturer's instructions are followed. ### 1.2 OTHER RELATED PROCEDURES: - 1.2.1 Test Standards - 1.2.2 Microscopic Comparison ### 2.0 SAFETY CONSIDERATIONS - 2.1 This procedure involves hazardous materials, operations and equipment. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Proper caution must be exercised and the use of personal protective equipment must be considered to avoid exposure to hazardous conditions. Consult the appropriate MSDS for each product prior to use. - 2.2 The examiner must consider the use eye protection, and work within a fume hood or utilize a spot vent. The examiner may wish to consider wearing a respirator, gloves, and an apron #### 3.0 PREPARATION 3.1 NONE Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### 4.0 INSTRUMENTATION **4.1 NONE** #### 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS **5.1 NONE** #### 6.0 PROCEDURE or ANALYSIS - 6.1 Prepare the casting material as per manufacturer's specifications. - 6.2 Cascade the casting material over the toolmark to be cast. - 6.3 Allow the cast the appropriate amount of time to cure. - 6.4 Gently lift the cast off the toolmark. - 6.5 Consideration must be given to placing identifying marks as well as orientation marks on the back of the cast. #### 7.0 APPROPRIATE APPENDICES 7.1 Appendix 4 - Worksheets #### 8.0 REFERENCES - 8.1 ANON., "Mikrosil Casting Material Information" AFTE Journal, Vo1.15, No. 2, p. 80. - 8.2 Barber, D.C. and Cassidy, F.H., "A New Dimension with 'Mikrosil' Casting Material", AFTE Journal, Vol. 19, No. 3, p.328 Technical Leader: Robert J. Shem, Forensic Scientist III Approved by: Firearm & Toolmark Supervisor Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### TM-IV-1 #### MISCELLANEOUS CYLINDER EXAMINATION #### 1.0 INTRODUCTION - 1.1 The forensic application of locksmithing can play an important part in criminal investigations and yield a wealth of valuable toolmark evidence. The examination of physical security devices (locks) may lead the investigators to new avenues of investigation in their case. - 1.2 OTHER RELATED PROCEDURES: - 1.2.1 Lock Set Examination Procedure - 1.2.2 Key Examination Procedure #### 2.0 SAFETY CONSIDERATIONS - 2.1 This procedure may involve hazardous materials, operations and/or equipment. Some component parts of a cylinder and/or lock are under spring tension and may present a missile hazard. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Proper caution must be exercised and the use of personal protective equipment must be considered to avoid exposure to any potential hazards - 2.2 The examiner should consider using eye protection. #### 3.0 PREPARATION **3.1** NONE #### 4.0 INSTRUMENTATION 4.1 Stereomicroscope #### 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### **5.1 NONE** #### 6.0 PROCEDURE or ANALYSIS #### 6.1 MISCELLANEOUS CYLINDER EXTERNAL EXAMINATION: - 6.1.1 Examine and note the overall condition of the cylinder. - 6.1.2 Examine and note the threaded area of the cylinder and any cylinder retaining screw marks in the retaining groove. - 6.1.3 Examine the cylinder face and edge. - 6.1.4 Note the position of the cam. - 6.1.5 Examine the plug face and the keyway entrance. - 6.1.6 If a key is submitted with the cylinder, check and note the operating condition of the cylinder. ### 6.2 MISCELLANEOUS CYLINDER INTERNAL EXAMINATION: - 6.2.1 Disassemble cylinder - 6.2.2 Microscopically examine the combination pins. - 6.2.3 Microscopically examine the plug. ### 6.3 INTERPRETATION OF RESULTS: - 6.3.1 Inappropriate marks on the combination pins would indicate that an instrument other than a key had been used. - 6.3.2 mappropriate marks in the plug would indicate that an instrument other than a key had been used. - 6.3.3 The presence of master pins in the cylinder would indicate that the cylinder is part of a master system. - 6.3.4 The presence of pick resistant driver(s) would indicate that the cylinder would be harder to compromise. ### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 6.3.5 Inappropriate marks on the combination pins would indicate that the marks are a disguise to conceal something else. 6.3.6 Inappropriate marks in the plug would indicate that the marks are a disguise to conceal something else. ### 7.0 APPROPRIATE APPENDICES - 7.1 Appendix 3 Calibration
Standards - 7.2 Appendix 4 Worksheets ### 8.0 REFERENCES 8.1 Robinson, Robert L., "Complete Course in Professional Locksmithing" Chicago, Illinois: Nelson-Hall, 1983 Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### TM-IV-2 #### **KEY EXAMINATION** #### 1.0 INTRODUCTION - 1.1 The forensic application of locksmithing can play an important part in criminal investigations and yield a wealth of valuable toolmark evidence. The examination of physical security devices (locks) may lead the investigators to new avenues of investigation in their case. - 1.2 OTHER RELATED PROCEDURES: - 1.2.1 Lock Set Examination - 1.2.2 Miscellaneous Lock Cylinder Examination #### 2.0 SAFETY CONSIDERATIONS - 2.1 This procedure may involve hazardous materials, operations and/or equipment. Some component parts of a cylinder and/or lock are under spring tension and may present a missile hazard. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Proper caution must be exercised and the use of personal protective equipment must be considered to avoid exposure to any potential hazards - 2.2 The examiner should consider using eye protection. #### 3.0 PREPARATION **3.1** NONE #### 4.0 INSTRUMENTATION 4.1 Stereomicroscope #### 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS ### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### **5.1 NONE** #### 6.0 PROCEDURE or ANALYSIS #### **6.1 KEY EXAMINATION** - 6.1.1 Examine and note the overall condition of the key. - 6.1.2 Examine and note any signs of key fatigue. - 6.1.3 Note whether the key is duplicate or original. - 6.1.4 Note the information on the key bow. - 6.1.5 Examine and note number of combination cuts. - 6.1.6 Examine and note what type of machine made the combination cuts. ### 6.2 INTERPRETATION OF RESULTS: - 6.2.1 The condition of the key may indicate the amount of use the key has been exposed to. - 6.2.2 The information stamped on the bow of a duplicated key may indicate the name and location of the cutter. - 6.2.3 If a punch type-cutting machine is used, striae may be compared with other key(s) or with the cutter. ### 7.0 APPROPRIATE APPENDICES - 7.1 Appendix 3 Calibration Standards - 7.2 Appendix 4 Worksheets #### 8.0 REFERENCES 8. Robinson, Robert L., "Complete Course in Professional Locksmithing" Chicago, Illinois: Nelson-Hall, 1983 Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### TM-IV-3 #### LOCK SET EXAMINATION #### 1.0 INTRODUCTION - 1.1 The forensic application of locksmithing can play an important part in criminal investigations and yield a wealth of valuable toolmark evidence. The examination of physical security devices (locks) may lead the investigators to new avenues of investigation in their case. - 1.2 OTHER RELATED PROCEDURES: - 1.2.1 Key Examination - 1.2.2 Miscellaneous Lock Cylinder Examination #### 2.0 SAFETY CONSIDERATIONS - 2.1 This procedure may involve hazardous materials, operations and/or equipment. Some component parts of a cylinder and/or lock are under spring tension and may present a missile hazard. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Proper caution must be exercised and the use of personal protective equipment must be considered to avoid exposure to any potential hazards - 2.2 The examiner should consider using eye protection. #### 3.0 PREPARATION **3.1** NONE #### 4.0 INSTRUMENTATION 4.1 Stereomicroscope #### 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS Technical Leader: Robert J. Shem, Forensic Scientist III Approved by: Firearm & Toolmark Supervisor ### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### **5.1 NONE** #### **6.0 PROCEDURE or ANALYSIS** #### 6.1 LOCKSET EXTERNAL EXAMINATION: - 6.1.1 Examine and note the overall condition of the lockset. - 6.1.2 Examine and note all the functions of the lockset. - 6.1.3 Examine and note the wear on the bolt, spring bolt, anti-shim device or anti-friction device. ### 6.2 LOCKSET INTERNAL EXAMINATION: - 6.2.1 Examine and note the overall condition of the Interior of the lockset. - 6.2.2 Examine and note worn, altered, damaged or missing parts. - 6.2.3 Examine and note the operation of the lockset to see if it functions as designed ### 7.0 APPROPRIATE APPENDICES - 7.1 Appendix 3 Calibration Standards - 7.2 Appendix 4 Worksheets ### 8.0 REFERENCES 8.1 Robinson, Robert L., "Complete Course in Professional Locksmithing" Chicago, Illinois, Nelson-Hall, 1983 Page **170** of **241** Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### TM-IV-4 #### SAFE TYPE EXAMINATION #### 1.0 INTRODUCTION - 1.1 The forensic examination of a safe can play an important part in a criminal investigation. This type of examination may have to be done in the field because of the size and weight of a safe. - 1.2 There are numerous factors to be considered when performing a safe examination. - 1.2.1 Many safes are repaired after a burglary and the examination must be done prior to any safe repair. - 1.2.2 What appears to be an actual safe burglary may prove to be staged. - 1.3 Results of a safe examination may aid detectives in establishing a crime pattern. - 1.4 OTHER RELATED PROCEDURES: - 1.4.1 Safe External Examination - 1.4.2 Safe Internal Examination ### 2.0 SAFETY CONSIDERATIONS - 2.1 This procedure may involve hazardous materials, operations and/or equipment. Some component parts of a cylinder and/or lock are under spring tension and may present a missile hazard. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Proper caution must be exercised and the use of personal protective equipment must be considered to avoid exposure to any potential hazards. - 2.2 A burglarized safe may have some jagged pieces of metal. Page **171** of **241** Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 2.3 The examiner should consider using eye protection. #### 3.0 PREPARATION **3.1 NONE** #### 4.0 INSTRUMENTATION 4.1 Stereomicroscope ### 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS **5.1 NONE** #### 6.0 PROCEDURE or ANALYSIS - 6.1 In order to determine the type of safe being examined, the examiner must look for or consider the following: - 6.1.1 Manufacturer's Identification Label or Tag - 6.1.2 Underwriters Laboratories Classification label. - 6.1.3 Safe Manufacturers National Association, Inc. Classification label. - 6.1.3.1 Note: This association is no longer in existence. - 6.1.4 Configuration and features of the safe. ### 6.2 INTERPRETATION OF RESULTS: - 6.2.1 Sales generally fall into one of six categories, these being: - 6.2.1.1 The unit is a burglary resistant money safe. - 6.2.1.2 The unit is a fire resistant safe. - 6.2.1.3 The unit is a composite safe, which has both fire and burglary resistant qualities. - 6.2.1.4 The unit is an encased/cladded money safe (money safe encased in concrete and steel outer lining). Page **172** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III Approved by: Firearm & Toolmark Supervisor #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 6.2.1.5 The unit is a combination safe, such as a fire resistant safe with money safe inside. 6.2.1.6 The unit is a floor safe. #### 7.0 APPROPRIATE APPENDICES - 7.1 Appendix 3 Calibration Standards - 7.2 Appendix 4 Worksheets #### 8.0 REFERENCES - 8.1 Robinson, Robert L., "Complete Course in Professional Locksmithing" Chicago, Illinois: Nelson-Hall, 1983 - 8.2 Paholke, Arthur R., SAFE RECOGNITION, Association of Firearm and Tool Mark Examiners 1970 Conference. - 8.3 Paholke, Arthur R., PHYSICAL SECURITY DEVICES Part IV and Part V, Chicago Police Department Training Bulletin Volume XVI, Number 1 (1975) Technical Leader: Robert J. Shem, Forensic Scientist III Approved by: Firearm & Toolmark Supervisor Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### TM-IV-5 #### **EXTERNAL SAFE EXAMINATION** ### 1.0 INTRODUCTION - 1.1 The forensic examination of a safe can play an important part in a criminal investigation. This type of examination may have to be done in the field because of the size and weight of a safe. - 1.2 There are numerous factors to be considered when performing a safe examination. - 1.2.1 Many safes are repaired after a burglary and the examination must be done prior to any safe repair. - 1.2.2 What appears to be an actual safe burglary may prove to be staged. - 1.3 Results of a safe examination may aid detectives in establishing a crime pattern. - 1.4 OTHER RELATED PROCEDURES: - 1.4.1 Safe Type Examination - 1.4.2 Safe Internal Examination ### 2.0 SAFETY CONSIDERATIONS - 2.1 This procedure may involve hazardous materials, operations and/or equipment. Some component parts of a cylinder and/or lock are under spring tension and may present a missile hazard. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and
determine the applicability of regulatory limitations prior to use. Proper caution must be exercised and the use of personal protective equipment must be considered to avoid exposure to any potential hazards. - 2.2 A burglarized safe may have some jagged pieces of metal. Page **174** of **241** Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 2.3 The examiner should consider using eye protection. #### 3.0 PREPARATION **3.1 NONE** #### 4.0 INSTRUMENTATION 4.1 Stereomicroscope ## 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS 5.1 NONE ### **6.0 PROCEDURE or ANALYSIS** 6.1 The steps below do not have to be performed in the order listed; however, all steps should be considered and/or addressed. Note, photograph and/or sketch any damage to the outside surfaces of the safe body and/or door. Measure the diameter of any and all holes; triangulate their location on the sketch of the safe. Note, photograph and/or sketch any reference mark(s) that could have been made during the compromise of the safe. Note, photograph and/or sketch any toolmarks on the exterior surfaces of the safe. ## 6.2 INTERPRETATION OF RESULTS: - 6.2.1 Although no final determination should be made until both an internal and external examination has been completed, the following information can be determined from these types of examinations. - 6.2.1.1 The damage to the exterior surfaces of the safe was sufficient to allow unauthorized entry. - 6.2.1.2 The damage to the exterior surfaces of the safe was insufficient to allow unauthorized entry. - 6.2.1.3 The lack of damage to the safe would indicate that the safe was entered by normal means. #### 7.0 APPROPRIATE APPENDICES Page **175** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III Approved by: Firearm & Toolmark Supervisor #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 7.1 Appendix 3 - Calibration Standards 7.2 Appendix 4 - Worksheets #### **8.0 REFERENCES** - 8.1 Robinson, Robert L., "Complete Course in Professional Locksmithing" Chicago, Illinois: Nelson-Hall, 1983 - 8.2 Paholke, Arthur R., SAFE RECOGNITION, Association of Firearm and Tool Mark Examiners 1970 Conference. - 8.3 Paholke, Arthur R., PHYSICAL SECURITY DEVICES Part IV and Part V, Chicago Police Department Training Bulletin Volume XVI, Number 1 (1975) Page **176** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III Approved by: Firearm & Toolmark Supervisor Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### TM-IV-6 #### INTERNAL SAFE EXAMINATION #### 1.0 INTRODUCTION - 1.1 The forensic examination of a safe can play an important part in a criminal investigation. This type of examination may have to be done in the field because of the size and weight of a safe. - 1.2 There are numerous factors to be considered when performing a safe examination. - 1.2.1 Many safes are repaired after a burglary and the examination must be done prior to any safe repair. - 1.2.2 What appears to be an actual safe burglary may prove to be staged. - 1.3 Results of a safe examination may aid detectives in establishing a crime pattern. - 1.4 OTHER RELATED PROCEDURES: - 1.4.1 Safe Type Examination - 1.4.2 Safe External Examination ### 2.0 SAFETY CONSIDERATIONS - 2.1 This procedure may involve hazardous materials, operations and/or equipment. Some component parts of a cylinder and/or lock are under spring tension and may present a missile hazard. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Proper caution must be exercised and the use of personal protective equipment must be considered to avoid exposure to any potential hazards. - 2.2 A burglarized safe may have some jagged pieces of metal. Page **177** of **241** Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 2.3 The examiner should consider using eye protection. #### 3.0 PREPARATION **3.1 NONE** #### 4.0 INSTRUMENTATION 4.1 Stereomicroscope ## 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS 5.1 NONE #### 6.0 PROCEDURE or ANALYSIS - 6.1 The steps below do not have to be performed in the order listed; however, all steps should be considered and/or addressed. - 6.1.1 Note, photograph and/or sketch any damage to the inside surfaces of the safe body and/or door. - 6.1.2 Note, photograph and/or sketch the position of the lock box, bolt works, cam and relockers. - 6.1.3 Note, photograph and/or sketch any toolmarks on the interior surfaces of the safe. ### 6.2 INTERPRETATION OF RESULTS: - 6.2.1 Although no final determination should be made until both an internal and external examination has been completed, the following information can be determined from these types of examinations. - 6.2.1.1 The damage to the interior surfaces of the safe was sufficient to allow unauthorized entry. - 6.2.1.2 The damage to the interior surfaces of the safe was insufficient to allow unauthorized entry. - 6.2.1.3 The lack of damage to the safe would indicate that the safe was entered by normal means. Page **178** of **241** Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### 7.0 APPROPRIATE APPENDICES 7.1 Appendix 3 - Calibration Standards 7.2 Appendix 4 - Worksheets ### 8.0 REFERENCES - 8.1 Robinson, Robert L., "Complete Course in Professional Locksmithing Chicago, Illinois: Nelson-Hall, 1983 - 8.2 Paholke, Arthur R., SAFE RECOGNITION, Association of Firearm and Tool Mark Examiners 1970 Conference. - 8.3 Paholke, Arthur R., PHYSICAL SECURITY DEVICES Part IV and Part V, Chicago Police Department Training Bulletin Volume XVI, Number 1 (1975) Page **179** of **241** Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### TM-V-1 #### **POLISHING** #### 1.0 INTRODUCTION - 1.1 Many valuable items manufactured today have serial numbers for identification. These numbers are usually die stamped. This process produces a compression of the metal or plastic in the area immediately surrounding and a short distance below the penetration of the die. Serial numbers are removed and/or obliterated in a variety of ways. The serial number may be restored if the removal/obliteration is not taken past the previously mentioned compression zone. - 1.2 It is desirable to remove (polish) the grinding and filing scratches introduced during obliteration. The Polishing procedure can be effective independently but is more often used in conjunction with various chemical or heat restoration procedures - 1.3 OTHER RELATED PROCEDURES: - 1.3.1 Chemical - 1.3.2 Electro-Chemica - 1.3.3 Magnetic - 1.3.4 Heat ### 2.0 SAFETY CONSIDERATIONS 2.1 This procedure involves hazardous operations and equipment. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Proper caution must be exercised and the use of personal protective equipment must be considered to avoid exposure to hazardous conditions. #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 2.2 The examiner should consider the use of eye protection, and work within a fume hood or utilize a spot vent. The examiner may wish to consider wearing a respirator and gloves. #### 3.0 PREPARATION 3.1 NONE ## 4.0 INSTRUMENTATION 4.1 NONE # 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS **5.1 NONE** #### 6.0 PROCEDURE or ANALYSIS - 6.1 Note and record any visible characters prior to polishing. - 6.2 Polish the area of the obliteration using either a: - 6.2.1 Dremel type tool with a sanding/polishing disc. - 6.2.2 Fine grit sand paper. - 6.3 Depending on the extent of the obliteration, continue polishing until the surface is minor-like removing all scratches. If the obliteration is severe it may not be possible or desirable to remove all the scratches. - 6.4 INTERPRETATION OF RESULTS: - 6.4.1 If any characters become visible note these characters. - 6.4.2 If characters do not become visible, proceed to the appropriate chemical or heat restoration procedure. # 7.0 APPROPRIATE APPENDICES - 7.1 Appendix 4 Worksheets - 7.2 Appendix 5 Serial Number Restoration Page **181** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III ALL PRINTED COPIES ARE UNCONTROLLED Approved by: Firearm & Toolmark Supervisor Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ## **8.0 REFERENCES** 8.1 Treptow, Richard, S., Handbook of Methods for the Restoration of Obliterated Serial Numbers, NASA, 1978. 8.2 Polk, Donald, E. and Giessen, Bill, C. "Metallurgical Aspects of Serial Number Recovery", AFTE Journal Vol. 21, No. 2, p.174. 8.3 Bureau of Alcohol, Tobacco and Firearms Laboratory, Serial Number Restoration Handbook, 1999. Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### TM-V-2 ## CHEMICAL RESTORATION NOTE: See Appendix 6 for serial number restoration on firearms ## 1.0 INTRODUCTION - 1.1 Many valuable items manufactured today have serial numbers for identification. These numbers are usually die stamped. This process produces a compression of the metal or plastic in the area immediately surrounding and a short distance below the penetration of the die. Serial numbers are removed and/or obliterated in a variety of ways. The serial number may be restored if the removal/obliteration is not taken
past the previously mentioned compression zone. - 1.2 The chemical restoration procedure or sometimes referred to as the chemical etching procedure is suitable for restoration of serial numbers in metal. The die stamping process is a form of "cold working" metal. A side effect of cold working is the decrease of that item's ability to resist chemical attack. Therefore the utilization of chemical etching will affect the compressed area of the obliterated number faster and to a greater degree than the non-cold worked area surrounding it. This procedure, in conjunction with the polishing procedure, is an effective way to restore an obliterated serial number in metal. # 1.3 OTHER RELATED PROCEDURES: - 1.3.1 Polishing - 1.3.2 Electro-Chemical - 1.3.3 Magnetic - 1.3.4 Heat ## 2.0 SAFETY CONSIDERATIONS ## Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 2.1 This procedure involves hazardous materials, operations and equipment. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Proper caution must be exercised and the use of personal protective equipment must be considered to avoid exposure to hazardous conditions. Consult the appropriate MSDS for each chemical prior to use ## 2.2 NFPA Codes | | HEALTH
HAZARD | FLAMMABILITY
HAZARD | REACTIVITY
HAZARD | CONTACT
HAZARD | |-------------------|------------------|------------------------|----------------------|-------------------| | Cupric Chloride | 3 | 0 | 0 | | | Hydrochloric Acid | 3 | 0 | 0 | | | Ethyl Alcohol | 0 | 3 | 0 | | | Nitric Acid | 3 | 0 | 0 | OXY | | Ferric Chloride | 2 | 0 | 0 | | | Sodium Hydroxide | 3 | 0 | 1 | | # 2.3 Chemical Warnings - 2.3.1 WARNING! Chloride is toxic and can pose a SEVERE HEALTH HAZARD. - 2.3.2 WARNING! Hydrochloric Acid is toxic and can pose a SEVERE HEALTH HAZARD. - 2.3.3 WARNING! Nitric Acid is toxic and can pose a SEVERE HEALTH HAZARD. - 2.3.4 WARNING! Nitric Acid is a strong solvent possessing oxidizing properties that can pose a SEVERE HEALTH HAZARD. - 2.3.5 WARNING! Sodium Hydroxide is toxic and can pose a SEVERE HEALTH HAZARD - 2.3.6 WARNING! Ethyl Alcohol is highly flammable and can pose a SEVERE SAFETY HAZARD # Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 2.4 The examiner should consider the use of eye protection, and work within a fume hood or utilize a spot vent. The examiner may wish to consider wearing a respirator and gloves. ## 3.0 PREPARATION - 3.1 NOTE: ALWAYS ADD ACID TO WATER. NEVER ADD WATER TO ACID. - 3.2 Fry's Reagent - 3.2.1 90 grams Cupric Chloride (CuCl₂) - 3.2.2 120 mL Hydrochloric Acid (HCI) - 3.2.3 100 mL distilled water (H₂0) - 3.3 Turner's Reagent - 3.3.1 2.5 grams Cupric Chloride (CuCl₂) - 3.3.2 40 mL Hydrochloric Acid (HC) - 3.3.3 25 mL Ethyl Alcohol - 3.3.4 30 mL distilled water (H₂0) - 3.4 Davis Reagent - 3.4.1 5 grams Cupric Chloride (CuCl₂) - 3.4.2 50 mL Hydrochloric Acid (HCI) - 3.4.3 50 mL distilled water (H_20) - 3.5 25% Nitric Acid - 8.5.1 25 mL Nitric Acid (HN0₃) - 3.5.275 mL distilled water (H_20) - 3.6 Acidic Ferric Chloride - 3.6.1 25 grams Ferric Chloride (FeCl₃) #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 3.6.2 25 mL Hydrochloric Acid (HCI) 3.6.3 100 mL distilled water (H₂0) ## 3.7 Ferric Chloride 3.7.1 25 grams Ferric Chloride (FeCl₃) $3.7.2\ 100\ \text{mL}$ distilled water (H_20) # 3.8 10% Sodium Hydroxide 3.8.1 10 grams Sodium Hydroxide (NaOH) 3.8.2 100 mL distilled water (H₂0) ## 4.0 INSTRUMENTATION # 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS **5.1 NONE** # 6.0 PROCEDURE or ANALYSIS - 6.1 Initial inspection of the serial number area for coatings, trace material or any character remnants as well as possibly determining the method of obliteration - 6.2 Utilize the "Polishing Procedure" if necessary. - 6.3 Determine the serial number medium's physical properties, i.e. magnetic or non-magnetic - 6.4 Utilize appropriate chemical reagent - 6.4.1 Magnetic Media 6.4.1.1 Fry's Reagent 6.4.1.2 Turner's Reagent 6.4.1.3 Davis Reagent 6.4.1.4 25% Nitric Acid Page **186** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III Approved by: Firearm & Toolmark Supervisor # Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived # 6.4.2 Non-Magnetic Media - 6.4.2.1 Ferric Chloride - 6.4.2.2 Acidic Ferric Chloride - 6.4.2.3 25% Nitric Acid - 6.4.2.4 10% Sodium Hydroxide - 6.4.2.5 Diluted Fry's Reagent - 6.5 Apply the chemical solution to the area of obliteration utilizing cotton tip applicators or swabs that have been moistened with the chemical solution. # 6.6 INTERPRETATION OF RESULTS: 6.6.1 If any characters become visible note these characters # 7.0 APPROPRIATE APPENDICES - 7.1 Appendix 4 Worksheets - 7.2 Appendix 5 Serial Number Restoration #### 8.0 REFERENCES - 8.1 Treptow, Richard, S., Handbook of Methods for the Restoration of Obliterated Serial Numbers, NASA, 1978. - 8.2 Polk, Donald, E. and Giessen, Bill, C. "Metallurgical Aspects of Serial Number Recovery", AFTE Journal Vol. 21, No. 2, p.174. - 8.3 Bureau of Alcohol, Tobacco and Firearms Laboratory, Serial Number Restoration Handbook, 1999. Page **187** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III ALL PRINTED COPIES ARE UNCONTROLLED Approved by: Firearm & Toolmark Supervisor Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ## **TM-V-3** #### **HEAT** ## 1.0 INTRODUCTION - 1.1 Many valuable items manufactured today have serial numbers for identification. These numbers are usually die stamped. This process produces a compression of the metal or plastic in the area immediately surrounding and a short distance below the penetration of the die. Serial numbers are removed and/or obliterated in a variety of ways. The serial number may be restored if the removal/obliteration is not taken past the previously mentioned compression zone. - 1.2 The Heat procedure is suitable for restoration of serial numbers in plastic. The die stamping or embossing process is a form of "coldworking" plastic. A side effect of cold working is the decrease of that item's ability to resist heat. Therefore the utilization of this procedure will affect the compressed area of the obliterated number faster and to a greater degree than the non cold-worked area surrounding it. This procedure, in conjunction with the polishing procedure, is an effective way to restore an obliterated serial number in heat. # 1.3 OTHER RELATED PROCEDURES: - 1.3.1 Polishing - 1.3.2 Electro-Chemical - .3.3 Magnetic - 1.3.4 Chemical # 2.0 SAFETY CONSIDERATIONS 2.1 This procedure involves hazardous materials, operations and equipment. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Proper caution must be exercised and the use of personal protective equipment must be considered to avoid exposure to #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived hazardous conditions. Consult the appropriate MSDS for each chemical prior to use 2.2 The examiner should consider the use of eye protection, and work within a fume hood or utilize a spot vent. The examiner may wish to consider wearing a respirator and gloves. # 3.0 PREPARATION **3.1 NONE** #### 4.0 INSTRUMENTATION **4.1 NONE** # 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS **5.1 NONE** #### 6.0 PROCEDURE or ANALYSIS - 6.1 Apply heat to the area of obliteration utilizing a high intensity lamp. - 6.2 Continue the application of heat until the plastic in the obliterated area starts to liquefy. - 6.3 INTERPRETATION OF RESULTS: 6.311 If any characters become visible note these characters. # 7.0 APPROPRIATE APPENDICES - 7.1 Appendix 4 Worksheets - 2 Appendix 6 Serial Number Restoration # 8.0 REFERENCES 8.1 Treptow, Richard, S., Handbook of Methods for the Restoration of Obliterated Serial Numbers, NASA, 1978. Technical Leader: Robert J. Shem, Forensic Scientist III Approved by: Firearm & Toolmark Supervisor Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 8.2 Polk, Donald, E. and Giessen, Bill, C. "Metallurgical Aspects of Serial Number Recovery", AFTE Journal Vol. 21, No. 2, p.174. - 8.3 Bureau of Alcohol, Tobacco and Firearms Laboratory, Serial Number Restoration Handbook, 1999. - 8.4 Roberts, Van, "Restoration of Serial Numbers in Plastic", AFTE Journal ,Vol. 13, No. 4, p. 40. Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### TM-V-4 #### **MAGNETIC** ## 1.0 INTRODUCTION - 1.1 Many valuable items manufactured today have serial numbers for identification. These numbers are usually die stamped. This process produces a compression of the metal or plastic in the area immediately surrounding and a short distance below the penetration of the die. Serial numbers are removed and/or obliterated in a variety of ways. The serial number may be restored if the removal/obliteration is not taken past the previously mentioned compression zone. - 1.2 The Magnaflux® technique is used by metallurgists to detect surface or subsurface flaws in iron or steel. Magnetic particles, applied to a magnetized specimen, outline the obliterated characters in a successful restoration. A side effect of cold working is the increase of that item's magnetism. Therefore, the
utilization of this method will affect the compressed area of the obliterated number rather than the non cold-worked area surrounding it. This procedure, in conjunction with the polishing procedure, is an effective way to restore an obliterated serial number in nonmagnetic metal. The Magnaflux® technique is nondestructive, and can be applied without hindering other restoration methods. # 1.3 OTHER RELATED PROCEDURES: - 1.3.1 Polishing - 1.3.2 Electro-Chemical - 1.3.3 Heat - 3.4 Chemical # 2.0 SAFETY CONSIDERATIONS 2.1 This procedure involves hazardous materials, operations and equipment. This procedure does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of # Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived regulatory limitations prior to use. Proper caution must be exercised and the use of personal protective equipment must be considered to avoid exposure to hazardous conditions. Consult the appropriate MSDS for each chemical prior to use. #### 2.2 NFPA Codes | | HEALTH
HAZARD | FLAMMABILITY
HAZARD | REACTIVITY
HAZARD | CONTACT | |--------------------------|------------------|------------------------|----------------------|---------| | 9CM Prepared Bath | 1 | 4 | 0 | | | 7HF Prepared Bath | 1 | 4 | 0 | | | 14AM Prepared Bath | 1 | 4 | 0 | | | SKC-S
Cleaner/Remover | 1 | 3 | 0 | OXY | # 2.3 Chemical Warnings - 2.3.1 WARNING! 9Cm Prepared Bath is highly flammable and can pose a SEVERE SAFETY HAZARD - 2.3.2 WARNING! 7 HF Prepared Bath is highly flammable and can pose a SEVERE SAFETY HAZARD - 2.3.3 WARNING! 14 AM Prepared Bath is highly flammable and can pose a SEVERE SAFETY HAZARD - 2.3.4 WARNING! SKC-S Cleaner Remover is highly flammable and can pose a SEVERE SAFETY HAZARD - 2.4 The examiner should consider the use of eye protection, and work within a fume hood or utilize a spot vent. The examiner may wish to consider wearing a respirator and gloves. - 2.5 If the UV light source is being used, the examiner must protect against exposure to the eyes and minimize exposure to the skin. ## 3.0 PREPARATION **3.1 NONE** # 4.0 INSTRUMENTATION # Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 4.1 UV light source (if 14AM Prepared Bath is being used). - 4.2 Yoke magnets - 4.3 Y-7 AC/DC Yoke electromagnet ## 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS **5.1 NONE** ## 6.0 PROCEDURE or ANALYSIS - 6.1 Ascertain whether the specimen is suitable for testing with Magnaflux® by placing a magnet on the area of obliteration. The specimen is suitable if it can be magnetized. - 6.2 Clean the area of obliteration with the SKO S Cleaner/Remover by spraying this onto the surface and wiping. Allow this to dry before proceeding. - 6.3 Apply Prepared Bath to the area of obliteration with a disposable pipet. - 6.4 Place the magnet behind the area of obliteration, with the poles on either side of the area. This placement may be adjusted to reveal more or different areas of the obliteration. - 6.5 If 14AM (Fluorescent) Prepared Bath is being used, observe the characters under a black light. - 6.6 INTERPRETATION OF RESULTS: - 6.6.1 Note any characters that become visible prior to proceeding with each step. - 6.6.2 If any characters do not become visible, proceed to the appropriate chemical restoration procedure # 7.0 APPROPRIATE APPENDICES - 7.1 Appendix 4 Worksheets - 7.2 Appendix 6 Serial Number Restoration Page **193** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III ALL PRINTED COPIES ARE UNCONTROLLED Approved by: Firearm & Toolmark Supervisor Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ## 8.0 REFERENCES - 8.1 Treptow, Richard, S., Handbook of Methods for the Restoration of Obliterated Serial Numbers, NASA, 1978. - 8.2 Polk, Donald, E. and Giessen, Bill, C. "Metallurgical Aspects of Serial Number Recovery", AFTE Journal Vol. 21, No. 2, p. 174. - 8.3 Bureau of Alcohol, Tobacco and Firearms Laboratory, Serial Number Restoration Handbook, 1999. - 8.4 O'Reilly, W.E. Magnetic Restoration of Serial Number. AFTE Journal 7: 26-27. - 8.5 Schaefer, Jeffrey. Serial Number Restoration Observations. AFTE Journal 19(3): 276-278. - 8.6 Turley, Dennis M. Restoration of Stamp Marks on Steel Components by Etching and Magnetic Techniques JFS 32(3): 640-649. Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ## **TM-V-5** ## **ELECTROCHEMICAL** ## 1.0 INTRODUCTION - 1.1 Many valuable items manufactured today have serial numbers for identification. These numbers are usually die stamped. This process produces a compression of the metal or plastic in the area immediately surrounding and a short distance below the penetration of the die. Serial numbers are removed and/or obliterated in a variety of ways. The serial number may be restored if the removal/obliteration is not taken past the previously mentioned compression zone. - 1.2 The electrochemical technique using the standard chemical etchants is an enhanced form of chemical restoration, in which the application of a voltage potential assists the oxidation of the specimen. The die stamping process is a form of "cold-working" metal. A side effect of cold working is the decrease of that item's ability to resist chemical attack. Therefore, the utilization of this method will affect the compressed area of the obliterated number faster and to a greater degree than the non cold-worked area surrounding it. This procedure, in conjunction with the polishing procedure, is an effective way to restore an obliterated serial number in magnetic metal. # 1.3 OTHER RELATED PROCEDURES: 1.3.1 Polishing 1.3.2 Magnetic .3.3 Heat 1.3.4 Chemical # 2.0 SAFETY CONSIDERATIONS 2.1 This procedure involves hazardous materials, operations and equipment. This procedure does not purport to address all of the safety problems associated #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Proper caution must be exercised and the use of personal protective equipment must be considered to avoid exposure to hazardous conditions. Consult the appropriate MSDS for each chemical prior to use. 2.2 The examiner should consider the use of eye protection, and work within a fume hood or utilize a spot vent. The examiner may wish to consider wearing a respirator and gloves. #### 3.0 PREPARATION **3.1 NONE** ## 4.0 INSTRUMENTATION 4.1 Power source # 5.0 MINIMUM ANALYTICAL STANDARDS and CONTROLS **5.1 NONE** ## 6.0 PROCEDURE or ANALYSIS - 6.1 Attach the specimen to the positive terminal of the power supply via an alligator clip. - 6.2 Thoroughly soak the cotton tip of an applicator with the appropriate chemical enchant and attach this to the negative terminal of the power supply via an alligator clip, being certain to do so on a moistened area at the base of the cotton tip. - 6.3 Turn on the power supply and adjust the voltage to 6V. - 6.4 Wipe the area of obliteration, being careful to not touch the surface of the specimen with the alligator clip. - 6.5 INTERPRETATION OF RESULTS: ## Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 6.5.1 Note any characters that become visible prior to proceeding with each step, as well as during the wiping process ## 7.0 APPROPRIATE APPENDICES - 7.1 Appendix 4 Worksheets - 7.2 Appendix 6 Serial Number Restoration #### 8.0 REFERENCES - 8.1 Treptow, Richard, S., Handbook of Methods for the Restoration of Obliterated Serial Numbers, NASA, 1978. - 8.2 Polk, Donald, E. and Giessen, Bill, C. "Metallurgical Aspects of Serial Number Recovery", AFTE Journal Vol. 21, No. 2, p.174. - 8.3 Bureau of Alcohol, Tobacco and Firearms Laboratory, Serial Number Restoration Handbook, 1999. - 8.4 Turley, Dennis M. Restoration of Stamp Marks on Steel Components by Etching and Magnetic Techniques. JFS 32(3): 640-649. - 8.5 Deats, Marcellus, Serial Number Restoration Information. AFTE Journal I2 (3): 82-83. - 8.6 Matthews, J. Howard, Firearms Identification. Volume I, pp. 77-80. Charles C. Thomas. Springfield, Illinois. 1962. - 8.7 Miller, Ken E., Current Assist for Die Stamp Impression Restoration, AFTE Journal 4(3): 38. Technical Leader: Robert J. Shem, Forensic Scientist III Approved by: Firearm & Toolmark Supervisor Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### **APPENDIX 1** ## **RANGE OF CONCLUSIONS** #### 1.0 Firearms #### 1.1 Identification - 1.1.1 The fired evidence in question was fired with the suspect firearm. - 1.1.2 The fired evidence in question was fired from the same firearm, firearm not received. #### 1.2 Elimination - 1.2.1 The fired evidence in question was not fired with the suspect firearm. - 1.2.2 The fired evidence in question was not fired from the same firearm, firearm not received. - 1.2.3 The discipline recognizes that an elimination of a firearm by other than class characteristics is possible but that such elimination is an exceptional situation. - 1.2.4 The discipline does not consider the routine comparison of test shots to the open case file to normally constitute an exceptional situation. - 1.2.5 If an examiner arrives at an opinion where he/she eliminates a firearm, for any reason, the examiner must substantiate the reasons supporting his/her opinion and incorporate them into his/her work notes. # 1.3 Inconclusive - 1.3.1 The fired evidence in question cannot be identified or
eliminated as having been fired with the suspect firearm. - 1.3.2 The fired evidence in question cannot be identified or eliminated as having been fired with the same firearm, firearm not submitted. - 1.3.3 Inconclusive categories Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 1.3.3.1 Inconclusive **A**: Some agreement of individual characteristics and all discernible class characteristics, but insufficient for an identification. - 1.3.3.2 Inconclusive **B**: Agreement of all discernible class characteristics without agreement or disagreement of individual characteristics due to an absence, insufficiency, or lack of reproducibility. - 1.3.3.3 Inconclusive **C**: Agreement of all discernable class characteristics and disagreement of individual characteristics, but insufficient for an elimination. ## 1.4 Unsuitable 1.4.1 The fired evidence in question is not suitable for comparison purposes. ## 1.5 Unidentifiable 1.5.1 The evidence in question cannot be identified as being fired evidence. ## 2.0 Toolmarks # 2.1 Identification - 2.1.1 The toolmark evidence in question was made with the suspect tool. - 2.1.2 The toolmark evidence in question was made with the same tool, tool not received. # 2.2 Elimination - 2.2.1 The toolmark evidence in question was not made with the suspect tool. - 2.2.2 The toolmark evidence in question was not made with the same tool, tool received. Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 2.2.3 The discipline recognizes that an elimination of a toolmark by other than class characteristics is possible but that such an elimination is an exceptional situation. #### 2.3 Inconclusive - 2.3.1 The toolmark evidence in question cannot be identified or eliminated as having been made with the suspect tool. - 2.3.2 The toolmark evidence in question cannot be identified or eliminated as having been made with the same tool, tool not submitted. - 2.3.3 Inconclusive categories - 2.3.3.1 Inconclusive **A**: Some agreement of individual characteristics and all discernible class characteristics, but insufficient for an identification. - 2.3.3.2 Inconclusive B: Agreement of all discernible class characteristics without agreement or disagreement of individual characteristics due to an absence, insufficiency, or lack of reproducibility. - 2.3.3.3 Inconclusive C: Agreement of all discernable class characteristics and disagreement of individual characteristics, but insufficient for an elimination. # 2.4 Unsuitable 2.4.1 The toolmark evidence in question is not suitable for comparison purposes. # 2.5 Unidentifiable 2.5.1 The evidence in question cannot be identified as being a toolmark. Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### **APPENDIX 2** ## **CRITICAL REAGENTS** 1.0 Analytical Standards and Controls are crucial in examinations where the potential for an erroneous result is possible due to the test procedure itself. The purchase of chemicals for use as critical reagents will be in accordance with the guidelines of the Laboratory's Quality Assurance Manual. The following chemicals are therefore defined as CRITICAL REAGENTS within the Firearm and Toolmark Section: GRIESS RDII-1 RHODIZONATE RDII-4 DITHIOOXAMIDE RDII-5 # These reagents: - 1. are prepared fresh when needed for casework by the examining scientist, - 2. are tested with positive and negative controls, - 3. the results are recorded on the case worksheet, and - 4. any leftover chemical solution is discarded. Because documentation of compliance is within the LIMS, a chemical logbook, as such, is not maintained. Retrieval of historical data regarding chemical testing in the Firearm and Toolmark Section is possible though crystal reports in Justice Trax. See the section on Range Determinations for approved suppliers of critical reagents. # 2.0 Griess and/or Modified Griess - 2.1 The Analytical Standards & Controls for Modified Griess procedures consists of first analyzing a control cloth swatch containing known gun smoke (soot) and partially burned gunpowder on one of the sensitized blanks being used. - 2.2 A brownish/red (Griess) or orange (Modified Griess) color should appear on the sensitized blank. This color shift indicates that the sensitized blank is sensitive to the presences of nitrites. #### 3.0 Sodium Rhodizonate 3.1 Primary Analytical Standards & Controls for Sodium Rhodizonate Page **201** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III ALL PRINTED COPIES ARE UNCONTROLLED Approved by: Firearm & Toolmark Supervisor ## Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 3.1.1 The Analytical Standards & Controls for Sodium Rhodizonate procedures consists of first analyzing a control cloth swatch containing known gun smoke (soot) and partially burned gunpowder on one of the sensitized blanks being used. - 3.1.2 By performing the Sodium Rhodizonate procedure on this control sample the examiner can determine if in fact the Sodium Rhodizonate solution is reacting. - 3.2 Alternative Analytical Standards & Controls for Sodium Rhodizonate - 3.2.1 An alternative set of Analytical Standards & Controls for Sodium Rhodizonate procedures consists of utilizing cotton swabs or a small piece of filter paper dampened with a 5% Hydrochloric acid solution. - 3.2.2 One of the treated swabs or filter paper is rubbed against a piece of known lead. - 3.2.3 This control sample is then processed with the Sodium Rhodizonate test to insure that the test is reacting properly. - 3.3 Dithiooxamide - 3.3.1 Analytical Standards & Controls for the Dithiooxamide (DTO) - 3.3 1.1 The Analytical Standards & Controls for the Dithiooxamide (DTO) procedure consists of testing a piece of known copper. A piece filter paper dampened with a aqueous solution of Ammonium Hydroxide (25%) is applied to a known source of copper. - 3.3.1.2 By performing the DTO procedure on this test mark the examiner can determine if in fact the DTO test is reacting. - 3.3.2 Alternative Analytical Standards & Controls for the Dithiooxamide (DTO) Technical Leader: Robert J. Shem, Forensic Scientist III Approved by: Firearm & Toolmark Supervisor Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 3.3.2.1 An alternative set of Analytical Standards & Controls for the DTO procedure consists of utilizing cotton swabs dampened with the ammonia solution. 3.3.2.2 One of the treated swabs is rubbed against a piece of known copper. This swab is then processed with the DTO test to insure that the test is reacting properly. Note: For each of the chemical procedures listed above, a chromorphic (color producing) reaction indicates a positive reaction. On each control sample and on each tested item of evidence, the lack of a chromorphic reaction indicates a nonreaction. Before an analytical conclusion is finalized about the development of a chromorphic reaction, it is important for the analyst to observe areas of no color reaction, to assure that no unknown property about the tested item is responsible for a false positive reaction. Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ## **APPENDIX 3** ## **CALIBRATION STANDARDS and INSTRUMENTATION MAINTENANCE** ## 1.0 COMPARISON MICROSCOPES The State of Alaska Scientific Crime Detection Laboratory utilizes two Leeds LCF Firearms Comparison Microscopes, installed March 1, 2010 and May 30, 2012. These microscopes replaced a Reichert Comparison Scope, serial #2. The Operations Manual and validation certification for the Leeds microscopes are maintained on the laboratory's computer network and in the laboratory's LIMS. ## 1.1 AS NEEDED: 2.1.1 The comparison microscope will be cleaned and serviced by a factory certified technician. ## 1.2 USAGE: - 1.2.1 The comparison microscope will be checked prior to use to insure that it is functioning property. - 1.2.2 This check will be performed by placing two similar items on each stage (test to test) and observing the agreement between these items. - 1.2.3 This performance check of the comparison microscope will be documented in the case file. - 1.2.4 Use of the stage micrometer for critical measurements of evidence will be preceded by verification with a NIST Micrometer Calibrator. This verification will be documented on the firearm worksheet. # 2.0 STEREOMICROSCOPE The Firearm & Toolmark unit of the laboratory utilizes Leica™ stereomicroscopes, models MZ6 and Wild M3Z. #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ## 2.1 AS NEEDED: 2.1.1 The stereomicroscopes will be cleaned and serviced by a factory certified technician if needed. #### 2.2 USAGE: - 2.2.1 Each stereomicroscope will be checked prior to use to insure that it is functioning properly. - 2.2.2 This check will be performed by observing an item under the microscope and utilizing past experience in determining if the instrument appears to be giving a true and accurate representation of the evidence. # 3.0 BALANCE ## 4.1 ANNUALLY: - 4.1.1 The balance/scale will be cleaned, serviced and certified annually by a reputable outside agency. These preventative maintenance actions will be documented and that documentation kept with the laboratory's quality assurance records. - 4.2.2 Use of the balance for critical measurements of evidence will be preceded by verification with a traceable 10 gram weight. This verification will be documented on the firearm worksheet. - 4.2.3 The certified balance (Mettler XS2002S) will be removed from service and repaired/recalibrated if the check weight (currently a 10 gram brass calibration mass) shows a discrepancy of more than one tenth of one percent (plus or minus 10
milligrams). - 4.2.4 Verification of the check weight (currently a 10 gram brass calibration mass) can be performed by weighing on a Chemistry balance that is checked monthly with NIST weights. Page **205** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III ALL PRINTED COPIES ARE UNCONTROLLED Approved by: Firearm & Toolmark Supervisor Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived NOTE: There is one certified balance in the Firearm Section This balance (a Mettler XS2002S) is the only balance employed for critical weight measures, bullets, etc. Other balances, such as the gunpowder dispensing balance, will be cross-checked against the certified balance when used in non-critical applications, such as hand loading or research projects. No record of this crosschecking will be kept; however, if a discrepancy is found, the non-certified balances will be recalibrated according to the manufacturer's instructions # 4.0 TRIGGER PULL DEVICES (ARSENAL or POSTAL WEIGHTS) ## 4.1 YEARLY: 4.1.1 Performance checks of the three trigger pull weights (0.5 lb, 1 lb, and 2 lbs) will be conducted when purchased and annually thereafter. Each weight must not exceed ±2.0 grams when performance checked, or the weight will not be used. The performance checks will be conducted utilizing an externally calibrated in-house balance. Documentation of performance checks of the trigger pull weights will be made and the records maintained in the Quality Assurance files. #### Conversions: - 226.80 grams - lb. = 453.59 grams - lbs. = 680.39 grams - lbs. = 907.18 grams - 1.2 The "hook device" will be checked when manufactured or purchased to ensure a weight within ±2.0 grams of the marked weight. - 4.1.3 This inspection does not need to be documented, because weights or "hook devices" that have an error from the marked weight exceeding ±2.0 grams will not be placed into service. # 4.2 USAGE: #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived 4.2.1 The arsenal weights and "hook device" will be inspected before each use to insure that the weights are not damaged. This inspection does not need to be documented unless something is noted. ## 5.0 MICROMETER/CALIPER ## 5.1 USAGE: 5.2.1 The micrometer/caliper will be checked prior to use to insure that it is functioning properly using a NIST-certified gauge block. The Certificate of Accuracy will be maintained on the laboratory's network and in the LIMS. Any checks will be documented on the appropriate laboratory worksheet for the item being measured. The gauge block will be replaced every two years. ## 6.0 RULERS #### 6.1 USAGE: - 6.1.1 Because the overall and barrel lengths of rifles or shotguns are factors in the legal ownership of a firearm, an accurate measurement of both is necessary, particularly when either measurement appears to be very close to the legal minimums. - 6.1.2 NIST traceable rulers will be utilized. The Certificates of Calibration for the NIST-traceable rulers will be maintained in the LIMS and on the laboratory's computer network. The rulers will be replaced every two years. - 6.1.3 The overall and barrel lengths, when it is necessary to record them, will be documented to the nearest tenth of an inch on the appropriate Firearm Worksheet. # 7.0 FUME HOOD # 7.1 ANNUALLY: 7.1.1 The fume hood will be serviced and certified annually by a reputable outside agency. These preventative maintenance actions will be Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived documented and that documentation kept with the laboratory Quality Assurance records. ## **8.0 INFRARED CAMERAS** The State of Alaska Scientific Crime Detection Laboratory utilizes a Sony NightShot digital camera. This camera is utilized primarily for documentation photography and for visualizing gunshot residue. The Operations Manual for this camera is kept in the Firearm/Toolmark laboratory and duplicate copies are kept in the Latent Print laboratory. Information on the camera is also kept on the laboratory computer network: I:\Uncontrolled Documents\Section Shares\Firearms_Share\Infrared Camera A second IR camera, Canon EOS 5D Mark II digital SLR, is being validated for use in the Firearm unit of the laboratory. Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ## **APPENDIX 4** ## **WORKSHEETS** ## 1.0 PURPOSE: - 1.1 documenting the work done - 1.2 guiding the examination - 1.3 serving as an archive for future reference # 2.0 ACCREDITATION STANDARDS (ISO 17025 Section 4.13.2 Technical Records) mandate that: - All original observations, data, and calibrations records be retained, - the name of the examiner is included on the worksheet, - the documentation is sufficient for another qualified examiner to evaluate what was done and interpret the data. - factors affecting uncertainty of measurement are identified, - · examination records indicate the start and end dates of testing, - the unique Laboratory number and examiner name or initials are indicated on each page of case notes, - all examination records are considered complete prior to any technical or administrative reviews, and - any verifications are done by a qualified and competency tested Firearms Examiner with this verification recorded in the LIMS. # 3.0 FIREARM WORKSHEETS: - 3.1 A filearm worksheet may take on many forms but should minimally contain the following information: - 3.1.1 Laboratory Case Number - 3.1.2 Caliber/Gauge - 3.1.3 Make Page **209** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III Approved by: Firearm & Toolmark Supervisor #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - 3.1.4 Model - 3.1.5 Serial number - 3.1.6 Firing mechanics - 3.1.7 Type of action - 3.1.8 Safeties - 3.1.9 Operating condition - 3.1.10 Trigger pull - 3.1.11 Rifling characteristics - 3.1.12 Barrel length - 3.1.13 Overall length - 3.1.14 Documentation of test fires produced using the firearm - 3.1.15 Other information the examiner might find useful # 4.0 FIRED BULLET WORKSHEET: - 4.1 A fired bullet worksheet may take on many forms but the examiner should minimally consider containing the following information: - 4.1. Laboratory Case Number - 4.1.2 Bullet Caliber - 4.1.3 Bullet Weight - 1.4 Bullet Morphology - 4.1.5 Bullet Rifling Characteristics - 4.1.6 Physical Condition of the bullet - 4.1.7 Other information the examiner might find useful Page **210** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III Approved by: Firearm & Toolmark Supervisor Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ## 5.0 DISCHARGED CARTRIDGE CASE WORKSHEET: - 5.1 A discharged cartridge case worksheet may take on many forms. - 5.1.1 The examiner should minimally consider containing the following information: - 5.1.1.1 Laboratory Case Number - 5.1.1.2 Cartridge Case Caliber/Designation - 5.1.1.3 Head Stamp Information - 5.1.1.4 Morphology of the cartridge case - 5.1.1.5 Type of firing pin impression - 5.1.1.6 Type of breach face marking - 5.1.1.7 Detailing any extraneous marking - 5.1.1.8 Other information the examiner might find useful Page **211** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III Approved by: Firearm & Toolmark Supervisor Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ## **APPENDIX 5** ## **REPORTS and CASE FILES** All results should be entered into the approved laboratory computer format for report generation. The report that is issued represents a summary of the analytical findings and should include: - A. Name of submitting agency - B. Submitting agency case number - C. Date of report - D. Crime Laboratory case number - E. Name of submitting officer or contributor - F. Brief description of items analyzed - G. Results or conclusions - H. Name of the Forensic Scientist performing analysis - I. Name of person performing review of findings The final report will clearly convey to the officer and/or prosecutor exactly what was analyzed. **REASONS for INCONCLUSIVE RESULTS** will be conveyed on the worksheet and in the report. Reports should be thoroughly checked by the forensic scientist after they are generated and before sending for review. All reports issued by examiners at the Scientific Crime Detection Laboratory must be subjected to a technical and an administrative review by another forensic scientist prior to issuing the report. The technical review portion must be performed by a scientist that has been competency-tested in the Firearm and Toolmark discipline. A technical review focuses on the analyst's bench notes and the chain-of-custody records. The main purpose of a technical review is to ensure that the conclusions of the examiner are fair and reasonable and based on sound scientific examinations and procedures. The technical reviewer should agree with the conclusions as based on the testing performed, and should be comfortable testifying to the results if the analyst happens to be unavailable for court. The main purpose of the administrative review is to check for proper transcription of identification numbers, adherence to laboratory policies, proper spelling and grammar, clarity of the report, appropriateness to the agency's request, and distribution of the Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived report to the proper agency or agencies. This last responsibility may be delegated to administrative personnel. Note: The signature of the reviewer on the final report indicates that the reviewer has performed both an administrative and technical review. Firearm and Toolmark Procedure Manual
Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ## **APPENDIX 6** # **SERIAL NUMBER RESTORATION** The Bureau of Alcohol, Tobacco and Firearms have provided the following information. It details the method that they and several other laboratories are utilizing to categorize their serial number restoration analysis. Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived Section Two Serial Number Removal Definitions and Codes Guide To Illegal Firearms **Trafficking Investigations Section 2** Serial Number Removal **Definitions and Codes ATF National Tracing Center Guide To Illegal Firearms Trafficking Investigations** Page **215** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III Approved by: Firearm & Toolmark Supervisor Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived # Serial Number Removal Definitions and Codes #### Page -11 # **Drilled/Cutting Device - DRI** The serial number is drilled out by using various types and sizes of drill bits or milling cutters. Individual impressions may be classified (round base or triangle base). Additionally, individual marks on other firearms or comparative test samples conducted with the suspect drill bit may be positively identified through comparative analysis and tool mark identification (casting). #### Page -12 #### Engraved/Electric Scribe - ELS An electric scribe or power assisted pointed engraving tool is used to obliterate or disfigure the stamped or engraved depression of the serial number and the surrounding by making several passes over the area or pressing the scriber into each element of the serial number until it is unreadable. ## Page -13 # Ground/Abrasive Grinding Device/Coarse Surface - GRC The stamped or engraved depression of the serial number and surrounding area is ground or sanded to a common plane and the resulting relieved surface area is characteristically coarse. This type of mark is consistent in alterations produced with the edge of a course abrasive wheel applied in an angular or bias position which produces an easily discerned "Cross-grain" or "Angular" grinding signature. #### Page -14 # Ground/Abrasive Grinding Device/Smooth Surface - GRS The stamped or engraved depression of the serial number and surrounding area is ground or sanded to a common plane and the resulting relieved surface area is characteristically smooth. This type of mark is consistent in alterations produced with the edge of a fine abrasive wheel applied in the same plane of the wheel's rotation which produces an "In-line" grinding signature. #### Page -15 # Ground/Abrasive Grinding Device/Concave Surface - GRV The area containing the serial number is ground concave. This type of obliteration mark is consistent in alterations produced with a bench grinder or hand-held motorized grinding tool. The characteristic concave relief is achieved using an abrasive wheel or rotary file cutting in the same plane of the wheel's rotation which produces an "In-line" grinding signature. ## Page -16 # Peened/Compression Device/Hammer - PND A series of manually applied impact depressions (peening marks) administered repetitively with a hammer or similar tool over and around the serial number to render it unreadable. ## Page -17 # Punched/Compression Device/Punch - PUN A series of manually applied impact depressions (punch marks or holes) administered at random or in a pattern over and around the serial number to render it unreadable. Individual punch marks may be classified by style of tip. Additionally, similar marks on other firearms or comparative test samples conducted with the suspect punch may be positively identified through comparative analysis and tool mark identification (casting). #### Page -18 ## Scratched/Broad Tipped Hand Tool - SCB A broad tipped hand tool such as a chisel or standard blade screwdriver is used to repeatedly scratch the stamped or engraved depression of the serial number and the surrounding area until the number is unreadable. ## Page -19 ## Scratched/Pointed Hand Tool - SCN A pointed hand tool similar to an awl or scribe is used to repeatedly scratch the stamped or engrave depression of the serial number and the surrounding area until the number is unreadable. **ATF National Tracing Center** Guide To Illegal Firearms Trafficking Investigations Page **216** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III Approved by: Firearm & Toolmark Supervisor Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived Page **217** of **241** Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived Page **218** of **241** Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived Page **219** of **241** Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived Page **220** of **241** Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived Page **221** of **241** Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived Page **222** of **241** Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived Page **223** of **241** #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived Page **224** of **241** ### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived Page **225** of **241** Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### **APPENDIX 7** #### **VERIFICATIONS** **1.0** Verification: A verification in the Firearm/Toolmark Section indicates that a second court-qualified examiner agrees with the summary report RESULTS and the bench notes CRITERIA FOR THE CONCLUSIONS for fired bullets, discharged cartridge case, items with toolmarks, and any other comparative analysis opinion reported by the first examiner. Verifications are performed when an examiner puts forth a comparison indicating an IDENTIFICATION, an ELIMINATION, or an INCONCLUSIVE where another examiner's comparison is deemed useful. Verifications may of may not include a re-examination of the evidence. While there is no requirement for verification of comparison results, the Firearm Examiners should routinely subject their comparative conclusions to a second opinion. The frequency of these verifications may range from only a few per year to many per year. 1.0.1 When a verification is to be performed, the case examiner will electronically request a verification examination in the Laboratory Information Management System (LIMS). The verifying examiner will then perform the verification and enter the results into the LIMS system, indicating the date performed. Page **226** of **241** Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ### **APPENDIX 8** ### **ABBREVIATIONS** 5 R L = G Means 5 lands and grooves, Right hand twist. L=G lands equals grooves LL>G lands larger AP Armor piercing Bb Barrel Bfm Breach face marks BP Black powder BT Boattail Chem Chemical examination or test CMS Case mouth seal, color identification. Also see MOUTH ANNULUS CN Cupro Nickel, bullet jacket CNCS Cupro Nickel Clad Steel, bullet jacket Cu Copper CWS Copper washed steel, case finish DC Dual core DCC Discharged cartridge case Ejt Ejector Exam Examined or examination Ext Extractor F Function Page **227** of **241** ### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived FA Firearms FMC Full metal case FMJ Full metal jacket, also known as FULL PATCH FP Firing pin. FPI Firing pin impression. FSLC Fired since last cleaned. G or GIMP Groove impression. GM Gliding metal, bullet jacket. GMCS Gliding metal clad steel, bullet jacket. GRC General rifling characteristics. Griess Griess test for nitrates. GSR Gunshot residue. HB Heavy ball, round-nose bullet. HE High explosive. HP Hollow point. HPB Heavy pointed ball, boattail bullet. HPT High pressure test. I Incendiary I.D. or IDENT Identification. IP Inside primed. JHP Jacketed hollow point. JSP Jacketed soft point. Page **228** of **241** ### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived L or LIMP Land impression. LPB Light pointed ball – flat based bullet. LRN Lead round nose bullet type. LS Lacquered steel, case finish. MA Mouth annulus, color identification. Also see CASE MOUTH_SEAL MC Metal cased. Mfg Manufacture. Mic or Micro Microscopic. Na Rho Sodium Rhodizonate test. NC No conclusion NCIC Code. Uniform offense codes published by the National Crime Information Center NI or Nonident Nonidentification (could not have fired the specimen). P Pointed. PA Primer annulus, color identification. Pb Lead. Prod. Code Product code RD Range determination Report A sharp explosive sound (especially the sound of a gun firing) RF Rimfire. RN Round nose. SHOTSHELL Shotgun shell ammunition ### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived SIMILAR Similar or approximately equal to. SN Soft nose. SP Soft point. SWC Semi-wad cutter. T Tracer. TC Truncated cone. Tests = Item X Means that the evidence, item X, can be identified as having been fired in the firearm being examined. Tests = Tests Means test cases and/or bullets can be identified as having been fired in the same firearm. TM Toolmarks w/ With. WC Wad cutter. Wt weight. Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012
Status: Archived ### **APPENDIX 9** ### PHYSICAL MATCHING #### 1.0 INTRODUCTION Physical matching is the total or partial reconstruction of a broken, fragmented, or separated object. This section outlines the procedures used in the realignment of two or more evidence fragments to determine if they were at one time joined to form a single object. When an object has been torn, broken, or separated, one piece of it has the potential to match another piece of it when they are placed next to one another. In forensic investigations, this is called physical or fracture matching. Because both the composition of an object and the stress applied to break it are always unique, when something is broken, torn, or separated, the edges of the pieces will always have characteristics that identify them with each other. When the pieces fit together, an examiner can conclude they were originally part of the same object. Physical (or fracture) match is such an important concept in evidence presentation that it is considered to be scientific evidence in courts of law. ### 2.0 PREPARATION - 2.1 Anything that can be torn, broken, or separated can be physically matched. Items commonly used for physical matching analysis include: - Plastics - Glass - Metal - Wood - Car parts - Paper - Currency - Tape #### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived Cloth - 2.2 There are four different physical match criteria: - The pieces have been broken apart. - The pieces can be realigned. - The pieces fit together along the fracture and the fit is verified by markings on the surface or within the three-dimensional structure of the fracture. - The pieces contain unique shapes. ### 3.0 INSTRUMENTATION - 3.1 Stereomicroscope - 3.2 Comparison microscope with camera - 3.3 Alternate light source ### 4.0 PROCEDURE - 4.1 Before making any attempt at physical matching, known and unknown pieces are kept separate. - 4.2 Inspect the shape of the break, any irregularities in the surface of the two pieces, and any striations that might have occurred during the break. - 4.3 Examine the composition of the pieces for similarities in age, texture, and deformation. - 4.4 When working with glass, preliminary observations regarding color, thickness, curvature, fluorescence, and surface features are made to eliminate pieces or to assure that all pieces could be from a single object. A mechanical fit is then attempted to determine if broken edges of unknown pieces lock together with pieces of known origin. Accidental characteristics such as scratches, striations, stains, etc. may aid in this reconstruction. - 4.5 View paper fragments utilizing alternate light sources. - 4.6 With paint samples, physical matching is the most conclusive type of identification. Class Characteristics such as topcoat color, layer sequence, and texture need to be distinguished from Accidental Characteristics which arise from use, abuse, and wear, such as fractured edges and surface striations. - 4.7 In order for an examiner to identify two fragments as parts of one item, a microscopic comparison utilizing a stereomicroscope should be performed. ### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived The stereomicroscope allows the examiner to place the evidence within the same field. 4.8 A fragment can be positively identified if it can either be fitted into another fragment ("jig saw puzzle" fit) and/or the continuity of the item's surface markings can be established across the break or tear between the two fragments. ### **5.0 DOCUMENTATION** 5.1 Photography is the recommended method of documentation for physical matches. ### **6.0 LIMITATIONS** 6.1 This laboratory does not have the capability of performing chemical analysis for the purpose of fragment comparison. Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived #### **APPENDIX 10** ### MEASUREMENT OF UNCERTAINTY IN GUN BARREL LENGTH ### 1.0 INTRODUCTION The U.S. government as well as the State of Alaska has restricted or prohibited certain firearms on the basis of barrel length. - 1.1 **Federal** guidelines: Shotguns have barrels as short as 18 inches (46 cm), the minimum shotgun barrel length allowed by law in the United States without special permits; most manufactures use a minimum length of 18.5 inches, to give leeway in the case of a measuring dispute). Barrel lengths of less than 18 inches (46 cm) as measured from the breechface to the muzzle when the weapon is in battery with its action closed and ready to fire, or have an overall length of less than 26 inches (66 cm) are classified as short barreled shotguns under the 1934 National Firearms Act and are heavily regulated. - 1.2 **Alaska** statute 11.61.200. <u>Prohibited Weapon</u>: rifle with a barrel length of less than 16 inches, shotgun with a barrel length of less than 18 inches, or firearm made from a rifle or shotgun which, as modified, has an overall length of less than 26 inches. For the State of Alaska Scientific Crime Detection Laboratory; measurements such as the barrel length of a sawed off shotgun are important measurements because legal rulings can be based on these measurements. These are "measurements that matter" that necessitate an analysis of the estimation of uncertainty of measurements. The following study was conducted in 2009 by a mentorship student under the guidance of the laboratory's Quality Assurance Manager. It was conducted in two parts: - A. Comparison of variability in multiple gun barrel measurement by two examiners. - B. Comparison of variability in repeated measurements of one item by two examiners. ### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived The measuring technique for gun barrel length is a method devised by Forensic Scientist Robert Shem that he uses for his work in the Alaska Scientific Crime Detection Laboratory. He uses a long wooden dowel that has a modified 2 mL plastic microcentrifuge tube positioned to slide along the length of the dowel. The rod slides down the length of the gun barrel and the plastic tube slides down the dowel until it contacts the tip of the barrel. Once the length of the barrel is demarcated on the dowel rod with the plastic tube, the rod is laid on a NIST traceable ruler. The process is repeated as a check on the measurer's accuracy. If the 2nd barrel length measurement is the same as the 1st, there is assurance of the barrel length, but if the two measurements differ, the process will be repeated until a consistent result is obtained. **A.** Forensic Scientists Robert Shem and Debra Gillis each used this technique to measure the barrel length of the fifteen guns listed below. В. | Make, Model and Serial Number | | Bob | Deb | Difference | |---|---|------|------|------------| | | | 18.6 | 18.6 | | | Mossberg model 500A 12 Gage #R867055 | 1 | in. | in. | 0 in. | | | | 27.8 | 27.8 | | | Remington Model 870 12 Gage #B241233M | 1 | in. | in. | 0 in. | | | | 24.1 | 24.1 | | | Remington Model 788 22 250 Rifle #136155149 | 1 | in. | in. | 0 in. | | | | 28.0 | 28.0 | | | Mossberg model 500A 12 gage #J833572 | 1 | in. | in. | 0 in. | | | | 21.1 | 21.0 | | | Remington model 870 20 gage #C130317V | 1 | in. | in. | 0.1 in. | | | | 24.0 | 24.0 | | | Remington model 700 256 caliber #B6304467 | 1 | in. | in. | 0 in. | | | | 22.0 | 22.0 | | | Remington model 700 243 caliber #C6528199 | 1 | in. | in. | 0 in. | ### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived | Harington & Richardson model 098 20 gage | | 25.6 | 25.6 | | |---|---|------|---------|----------| | #HE221194 | 1 | in. | in. | 0 in. | | | | 18.5 | 18.5 | | | Ruger Ranch Rifle 223 caliber #187-61383 | 1 | in. | in. | 0 in. | | | | 29.9 | 29.9 | | | Winchester model 1400 MK II #403909 | 1 | in. | in. | 0 in. | | | | 19.2 | 19.2 | Y | | American Arms model SM 64 #058157 | 1 | in. | ì | 0 in. | | | | 20.3 | 20.3 | | | Winchester model 9422 22 caliber #F220320 | 1 | in. | in. | 0 in. | | | | 7.4 | | | | Remington model 522 #3085912 | 1 | in. | 7.4 in. | 0 in. | | | | 15.4 | 15.4 | | | Mossberg model 500A 12 gage #J880934 | 1 | in. | in. | 0 in. | | | | 27.6 | 27.6 | | | Browning model suite 16 16 gage #5860 | 1 | in. | in. | 0 in. | n = 15 degrees of freedom = 14 average difference = 0.006667 variance = 0.006667 standard deviation = 0.02582 standard error = 0.006667 This data was analyzed using a two-tailed paired sample *t* test to look at the differences between the measurements for each gun. The original hypothesis was that there was no difference between the gun measurements. The *t* value for *t*0.05(2),14 equals 2.145. ### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived If the calculated *t* value is greater than 2.145 the original hypothesis will be rejected. The calculated *t* value for the first round of gun barrel measurements was 1 and therefore we accepted our original hypothesis. As the results show, there is little variability between Forensic Scientist Shem's measurements and Forensic Scientist Gillis' measurements, and it can be concluded that their measuring technique provides consistent, accurate data and has a low rate of variability between the two examiners. C. Forensic Scientists Robert Shem and Debra Gillis each used the same technique to perform repeated gun barrel measurements of the same gun. The firearm selected for this experiment was a Mossberg model 500A 12 gauge shotgun, serial number J833572. Each examiner measured the barrel fifteen times: | | erg Model 500A | A 12 Gage | | n= | \ | 30 | |--------|----------------|-----------|-----|--------------------|----|------------|
| Seriel | #J833572 | | | DF`(v) = | | 29 | | 1 | 28.0 | 784 | bob | Average = | | 28 | | 1 | 28.0 | 784 | bob | Sum of Squares | | 0 | | 1 | 28.0 | 784 | bob | Variance = | | 0 | | | | | | Standard Deviation | on | | | 1 | 28.0 | 784 | bob | = | | 0 | | | | | | Coefficient of | | _ | | 1 | 28.0 | 784 | bob | Variation = | | 0 | | 1 | 28.0 | 784 | bob | | | | | 1 | 28.0 | 784 | bob | Plus or minus | | | | 1 | 28.0 | 784 | bob | | 0 | Sixteenths | | 1 | 28.0 | 784 | bob | | | | | 1 | 28.0 | 784 | bob | | | | | 1 | 28.0 | 784 | bob | | | | | 1 | 28.0 | 784 | bob | | | | | 1 | 28.0 | 784 | bob | | | | | 1 | 28.0 | 784 | bob | | | | | 1 | 28.0 | 784 | bob | | | | | 1 | 28.0 | 784 | deb | | | | | 1 | 28.0 | 784 | deb | | | | | 1 | 28.0 | 784 | deb | | | | | 1 | 28.0 | 784 | deb | | | | | 1 | 28.0 | 784 | deb | | | | | 1 | 28.0 | 784 | deb | | | | | 1 | 28.0 | 784 | deb | | | | Page **237** of **241** | | | Firearm | n and Toolmark Pr | ocedure Manual | |------------|----------|---------|-------------------|---------------------| | Issued: 7/ | 5/2012 | | | Version: FTM2012 R1 | | Effective: | 7/7/2012 | | | Status: Archived | | | | | | | | 1 | 28.0 | 784 | deb | | | 1 | 28.0 | 784 | deb | | | 1 | 28.0 | 784 | deb | | | 1 | 28.0 | 784 | deb | | | 1 | 28.0 | 784 | deb | | | 1 | 28.0 | 784 | deb | | | 1 | 28.0 | 784 | deb | | | 1 | 28.0 | 784 | deb | N 1. | 30 | 840 | 23520 | | | | | | | | | As the results show, there was no variability in the recorded repeated measurement of Forensic Scientist Shem and Forensic Scientist Gillis. The standard deviation is zero, and the method does not demonstrate variability. Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ### **APPENDIX 12** #### PACKAGING OF EVIDENCE FOR SUBMITTAL TO THE LABORATORY ### 1.0 INTRODUCTION Submittal of firearm and toolmark evidence to the laboratory is addressed in the discipline manual for the Evidence section: "Guns, knives, tools, etc. should be wired to the bottom of a box so the item does not puncture the packaging." Firearm personnel should be consulted on issues involving specific packaging questions. ### 2.0 SAFETY 3.1 Firearm personnel should be consulted on issues involving specific safety questions. #### 3.0 PREPARATION 3.1 None ### 4.0 INSTRUMENTATION 4.1 None ### 5.0 PROCEDURE 5.1Loaded Firearms Is were ever a time or protocol when an agency can or will submit a loaded firearm and if so, - There are situations where the lab would receive loaded firearms. - Loaded guns should be hand-carried (not mailed) and any outside packaging boldly and clearly labeled to indicate the loaded condition. - Once the gun is at the lab an experienced lab person familiar with firearms should unpackage the gun and unload it as soon as possible. It should not be put into storage at the lab in a loaded condition unless that is the only option. Page **239** of **241** Technical Leader: Robert J. Shem, Forensic Scientist III ALL PRINTED COPIES ARE UNCONTROLLED Approved by: Firearm & Toolmark Supervisor ### Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived - Common sense should rule the day. Keep fingers away from triggers and safeties. Any handling of the firearm must be with the muzzle pointed in a safe direction. - However, I encourage everyone to treat every gun as if it is loaded with the safety in the "off" position. Keeping a heightened state of alert while handling guns will be valuable in the event of an unanticipated discharge. 5.3 Discharged Cartridge Cases Follow protocol above, eliminating the rinse step (1). ### **6.0 DOCUMENTATION** 6.1 None Firearm and Toolmark Procedure Manual Issued: 7/5/2012 Version: FTM2012 R1 Effective: 7/7/2012 Status: Archived ### **APPENDIX 11** ### **REVISION HISTORY** | Section(s) Revised | Date | Issuing Authority | |--|----------|------------------------| | FA-II-6, Firearms Bullet Collection, p. 38, | 7-5-2012 | Jane Booth, Supervisor | | changed to "6.1.4 Each item in the Firearms | | | | Bullet Collection is to be uniquely identified | | | | and documented. The collection will be | | | | housed in storage containers utilizing caliber | | | | and/or other manufacturer's data as | | 10 | | appropriate to organize. When a comparison | | | | is made and reported, the specific | | | | ammunition reference standard utilized must | | | | be identified in the case file." | ' \ | | | | | | | | | |